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CHAPTER 1 - INTRODUCTION 

The cardiovascular system and coronary heart disease 

The cardiovascular system consists of the heart, which is an anatomical pump, 

with its intricate conduits (arteries, veins and capillaries) that traverse the whole human 

body carrying blood.  While the heart is the power source responsible for maintaining 

adequate circulation of oxygenated blood, arteries are the elastic and contractile 

vessels to carry blood away from the heart under high pressure and regulate the flow 

volumes [3].  The wall of an artery consists of three distinct layers: The inner most 

tunica interna is made of a layer of simple squamous epithelium known as endothelium.  

It rests on a connective tissue membrane with many elastic and collagenous fibers, 

named basal membrane.  The middle tunica media makes up most of an arterial wall, 

including smooth muscle fibers and a thick elastic connective tissue layer.  The outer 

tunica externa (tunica adventitia) is thinner, mostly made up of connective tissue with 

irregular fibers.  The heart is a highly energy-consuming muscular organ and is supplied 

with oxygen-rich blood by the coronary arteries.  

Arterial atherosclerosis is characterized as the formation of atherosclerotic 

lesions at the inner layer of arteries, including coronary arteries.  Atherosclerosis causes 

arterial walls thicken and lose elasticity.  Progressively, the growth and erupt of 

atherosclerotic plaques cause blockages of coronary arteries and severe damage of the 

cardiac muscle, a syndrome described as the coronary heart diseases (CHD). 

Currently, arterial atherosclerosis is the leading cause of morbidity and mortality in the 

U.S. and in most developed countries.  Arterial atherosclerosis-caused CHD is also 

rapidly increasing in prevalence in developing countries.  Therefore, the prevention and 
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treatment of atherosclerosis is of paramount importance in the prevention and treatment 

of cardiovascular diseases (CVDs).  

Atherosclerosis was formerly considered a cholesterol storage disease, based on 

strong evidence of experimental and clinical relationships between 

hypercholesterolemia and atheroma [4].  In the past two decades, extensive research 

on the pathophysiology of the disease has established that atherosclerosis is an 

inflammatory disease [5] [6] [7].  

Atherosclerosis is an inflammatory disease 

Atherosclerosis is initiated by the subendothelial accumulation of cholesterol-rich, 

apolipoprotein B-containing lipoproteins (ApoB-LPs) in the susceptible areas of arterial 

vasculature [8].  The sequestered ApoB-LPs within the intima are isolated from plasma 

antioxidants, thus become vulnerable to various modifications, such as oxidation, 

enzymatic and non-enzymatic cleavage, and aggregation.  These modifications cause 

the damage of ApoB-LPs and render these particles pro-inflammatory.  Both innate and 

adaptive immune responses are activated with the progression of the disease [9] [10].  

The key early inflammatory response to oxidative ApoB-LPs is the activation of 

overlying endothelial cells and recruitment of monocytes/macrophages [11] (Figure 1).  

It is rapidly followed by an adaptive immune response to an array of potential antigens 

presented to effector T lymphocytes.  Both the innate and adaptive immune responses 

play important roles in the initiation and development of atherosclerosis.  In fact, 

Atherosclerotic lesions contain large number of immune cells, particularly macrophages 

and T cells [12].  The reduction of macrophages in mice deficient for macrophage 

colony-stimulating factor (M-CSF) protects against atherosclerosis [13].  Defective 
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generation of T and B lymphocytes also significantly inhibits lesion development [14] 

[15].  

Figure 1. The initial inflammatory response in atherosclerosis. ApoB-LPs (take the LDL as 
an example in the figure) enter the intima and undergo various modifications, such as oxidation. 
These modifications incite an inflammatory response characterized by chemokine/cytokine 
secretion and altered expression of adhesion molecules by the overlying endothelial cells. The 
inflammatory signals lead to monocyte recruitment into the intima, where they differentiate into 
macrophages and internalize modified lipoproteins, resulting in the formation of foam cells, a 
landmark of atherosclerosis lesion. (Modified from [8] ) 

Role of macrophage in the development of atherosclerosis 

While subendothelial retention of oxidative lipoproteins is the initiating step of 

atherogenesis, the ensuing immune response is mediated by the recruited monocytes 

that differentiate into macrophages and ingest the accumulated oxidative lipoproteins, 

which transforms them into the cholesterol-laden foam cells.  Activated endothelial cells 

secrete chemoattractants to guide monocytes directional migration.  While endothelial 

cells normally resist leukocyte adhesion, activated endothelial cells express adhesion 

molecules such as vascular cell adhesion molecule-1 (VCAM-1) and P-selectin that 
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mediate monocyte rolling, adhesion and migration into the intima [16].  Within the 

intima, monocytes mature into macrophages with the up-regulation of scavenger 

receptors, under the influence of M-CSF [17]. Macrophages engulf oxidative lipoproteins 

through scavenger receptors.  The accumulation of cholesteryl esters in the cytoplasm 

produces the characteristic change of macrophages into foam cells (Figure 1).  

Macrophages and foam cells derived from them amplify the inflammatory response 

through the secretion of numerous growth factors and cytokines, including tumor 

necrosis factor-a (TNF-a) and interleukin-1b (IL-1b).  The two key cytokines are central 

mediators of inflammatory pathways relevant to atherosclerosis [16].  

Notably, macrophages that accumulate in atherosclerotic plaques seem to have 

a diminished capacity to migrate, which contributes to their failure to resolve 

inflammation and to the progression of the lesion to more advanced, complex plaques in 

which other immune cells subsets and vascular smooth muscle cells participate in the 

inflammatory process [18].  In these advanced plaques, macrophages continue to be 

major contributors to the inflammatory response through their secretion of pro-

inflammatory mediators (including chemokines, cytokines and reactive oxygen and 

nitrogen species) and their eventual death by necrosis or apoptosis.  Dying 

macrophages release their lipid contents and tissue factors, which leads to the 

formation of a pro-thrombotic necrotic core, a key component of unstable plaques, and 

contributes to their rupture and the ensuing intravascular blood clot that underlies 

myocardial infarction and stroke.  

Therefore, the regulation of macrophage activation and function has become a 

focus of the exploration of new therapeutic approaches for arterial atherosclerosis.  To 
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date, the regulation of macrophage function in atherosclerosis and other inflammatory 

diseases has been investigated mainly in the context of ligand-receptor recognitions 

and the effects on cell signaling.  While the motility and substrate adhesion of 

macrophages play essential roles in the development and resolution of inflammation 

[19] [20], very little is known about how the regulation and mechanisms by which these 

cytoskeleton mechanical tension-based functions determine the development and 

prognosis of atherosclerosis.  

Calponin and isoforms 

Calponin is a family of actin filament associated regulatory proteins. It was first 

identified in chicken gizzard smooth muscle, with a proposed function as a striated 

muscle troponin T-like protein that binds actin thin filaments to regulate smooth muscle 

contraction [21].  Extensive research subsequently found that calponin is an actin 

filament-associated regulatory protein of 34-37 kDa (292-330 amino acids) expressed in 

both smooth muscle and many non-muscle cell types and functions as an inhibitor of 

actin-activated myosin ATPase.  

Three isoforms of calponin encoded by three homologous genes have been 

found in vertebrate species: A basic calponin (calponin 1, isoelectric point (pI) = 9.4) 

encoded by CNN1 [22], a neutral calponin (calponin 2, pI = 7.5) encoded by CNN2 [23] 

[24] and an acidic calponin (calponin 3, pI = 5.2) encoded by CNN3 [25] (Table 1).  

Comparisons of cDNA sequences and the deduced protein primary structures 

demonstrated that calponin 1, 2 and 3 have largely conserved structures.  The 

phylogenetic tree produced by alignment of amino acid sequences of the three calponin 

isoforms in vertebrate species investigated to date showed that each of the calponin 
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isoforms is conserved in the vertebrate phylum whereas the three isoforms have 

significantly diverged early during evolution (Figure 2).  This relationship likely reflects 

adaptations of the calponin isoforms to their potentially differentiated cellular functions.  

 
Table 1. Calponin isoform genes and their tissue-specific expression.  

Isoform Genes CNN1 CNN2 CNN3 

Protein product Calponin 1 Calponin 2 Calponin 3 

Location in human 
chromosome genome 

19p13.2-
p13.1 19p13.3 1p22-p21 

Number of Exons 7 7 7 

Number of amino acids  297 309 329 

Molecular Weight 33.2-kDa 33.7-kDa 36.4-kDa 

Isoelectric Point 9.10 7.23 5.84 

Tissue expression 

 
 
 

Smooth 
muscle 

Smooth muscle 
Neuronal tissue 

Fibroblast 
Myoblasts 

Epithelial cells 
Endothelial cells 

Monocytes/Macrophages 
B lymphocytes 

Smooth muscle 
Neuronal tissue 

Fibroblast 
Myoblasts 

Trophoblasts 
B lymphocytes 

The data presented are based on human calponin isoforms and genes, except for the tissue- and cell-
specific expressions that are from studies of multiple vertebrate species. 
 

Tissue distribution of calponin isoforms 

The three calponin isoforms exhibit different patterns of tissue and cell type-

specific expressions.  The expression of calponin 1 is highly specific to smooth muscle 

cells (Table 1).  The contents of calponin 1 vary among different types of smooth 

muscle.  For example, a high level of expression is seen in phasic smooth muscle of the 

digestive tract and a very low level of expression is found in avian trachea [26].  The 
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expression of calponin 1 in smooth muscle is up-regulated during development [27].  

The mature smooth muscle cell-specific high level expression of calponin 1 suggests a 

role in smooth muscle differentiation and contractile functions.  

 Calponin 2 is found in a broader range of tissue and cell types, including 

developing and remodeling smooth muscles and adult mature smooth muscles [27], 

epidermal keratinocytes [28], fibroblasts [29], lung alveolar cells [30], endothelial cells 

[31], myeloid white blood cells [1], myoblasts [32], prostate cancer cells [2] and platelets 

[33] (Table 1).  These cell types can be placed in three groups: a) cells that are 

physiologically under high mechanical tension, e.g., smooth muscle cells in the wall of 

hollow organs, epithelial and endothelial cells; b) cells that have high rates of 

proliferation, e.g., myoblasts; and c) cells that are actively migrating, e.g., fibroblasts 

and macrophages.  The tissue distributions of calponin 2 may imply a role in regulating 

cytoskeleton tension and related functions, such as adhesion, proliferation and 

migration [34]. 

Calponin 3 is found in the brain with expressions in neurons [35], astrocytes [36], 

and glial cells [37] (Table 1), where it may function in regulating the actin cytoskeleton 

with a proposed role in the plasticity of neural tissues [38, 39].  Calponin 3 is also found 

in embryonic trophoblasts and myoblasts with a function in cell fusion during embryonic 

development and myogenesis [40, 41].  Gene targeting studies showed that mice with 

the knockout of either Cnn1 or Cnn2 gene are viable and fertile [42] [1].  In contrast, 

Cnn3 knockout resulted in embryonic and postnatal lethality due to defective 

development of the central nervous system [43], suggesting the critical of calponin 3 in 

embryonic and neural system development. 
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Figure 2. Evolutionary lineage of vertebrate calponin isoforms. The phylogenetic tree 
of vertebrate calponin isoform genes is derived from protein sequence alignment 
performed with the Clustal V method using the MegAlign computer program (Lasergene; 
DNASTAR, lnc, Madison, WI). The degrees of evolutionary divergence are indicated by the 
lengths of lineage lines. Calponin isoforms 1, 2 and 3 are marked in green, blue and red, 
respectively. *The aliases of Africa clawed frog Cnn1 and Cnn2 genes deposited in NCBI 
database are annotated as Cnn2 and Cnn1, respectively, which is inconsistent with the 
sequence homology analysis and requires further validation. (See Appendix B)  
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Structure-function relationship of calponin  

Current knowledge of the structure-function relationship of calponin was largely 

learned from biochemical studies of calponin 1 in smooth muscles.  Summarized in 

Figure 3, primary structure of the three calponin isoforms consists of a conserved N- 

terminal calponin homology (CH) domain, a conserved middle region containing two 

actin-binding sites, and a C-terminal variable region that constitutes the main 

differences among the isoforms. 

Outlined in Figure 3, a sequence motif of ~100 amino acids in the N-terminal 

region of calponin (residues 29-129) is identified as the “calponin homology (CH) 

domain”.  CH domains have been found as tandem repeats in many actin-binding 

proteins with functions including actin cross-linking to cell signaling and are proposed to 

be either autonomous actin binding motifs or to serve as regulatory structure [44] [45].  

However, in contrast to its observed functions in various other proteins, the single CH 

domain in calponin is not the binding site between calponin and F-actin nor regulates 

the modes of calponin F-actin binding [46].  CH domain of calponin was found to bind to 

extra-cellular regulated kinase (ERK) 1 and 2, suggesting a function in ERK signaling of 

smooth muscle and non-muscle cells [47]. 

A large collection of evidence demonstrated the role of calponin as an actin-

binding protein that inhibits the MgATPase activity of smooth muscle myosin [48, 49] 

[50] [51] and hinders the movement of actin filaments over immobilized myosin heads 

[52] [53].  Calponin binds to F-actin through two binding sites (residues 144-162 and 

171-188 in chicken calponin 1) (Figure 3) that are conserved among the three calponin 

isoforms. In vitro data show calponin induces actin polymerization and inhibits  
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Figure 3. Linear structure and comparison of calponin isoforms. The illustrations 
summarize the primary structures and comparison of the three calponin isoforms. (A) The 
linear structural map primarily summarized from studies of chicken calponin 1 outlines the 
structural and functional domains of calponin. The N-terminal CH domain, the two actin-
binding sites, the three repeating sequence motifs, and the C-terminal variable region are 
shown. The CH domain overlaps with the ERK binding region. Amino acid sequences of the 
two actin-binding sites in the three isoforms and the three repeating motifs of calponin 1 are 
shown in the insets. The regulatory phosphorylation sites Ser175 and Thr184 are located in the 
second actin-binding site that overlaps with the first repeating motif. Potentially 
phosphorylatable serine residues corresponding to Ser175 are conserved in both repeats 2 
and 3, whereas a Thr184 equivalent is conserved in repeat 2. Different from calponin 1 and 
calponin 3, calponin 2 has an additional, potentially phosphorylatable, serine at position 177. 
(B) Each of the three calponin isoform genes contains seven exons. While the three isoforms 
are largely conserved in the N-terminal and middle regions, they have a C-terminal variable 
region encoded by exon 7 that is significantly diverged in length and amino acid sequences.  
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depolymerization of actin filaments.  Addition of calponin greatly retarded the 

actin depolymerization process [54].  These findings are consistent with the results in 

living cells that transfective expression of calponin 2 increases resistance of actin 

filaments to cytochalasin B, indicating the role of calponin 2 in stabilizing actin skeleton 

[29].  

There are three repeating sequence motifs in calponin next to the C-terminal 

region.  This repeating structure is also conserved in all three isoforms and across 

species. Illustrated in Figure 3, the first repeating motif overlaps with the second actin-

binding site (residues 171-188) and contains the protein kinase C (PKC) 

phosphorylation residues Ser175 and Thr184 that have no counterparts in the first actin-

binding site (residues 144-162).  This structural feature is consistent with the hypothesis 

that the second actin-binding site plays a regulatory role in the binding of calponin to the 

actin filament. Similar sequences as well as potential phosphorylation sites are present 

in repeats 2 and 3 although their functions and regulation have not been determined.  

Therefore, the biological significance of these repeating motifs in calponin remains to be 

established.  

The C-terminal segment of calponin is a variable region that has diverged 

significantly among the three isoforms.  The variable lengths and amino acid 

compositions of the C-terminal segment produce the size and charge differences 

among the three calponin isoforms (Table 1).  The corresponding charge features 

rendered calponin 1, 2 and 3 the name of “basic”, “neutral” and “acidic” calponins, 

respectively ([55] [56].  The C-terminal segments of calponin have been shown to have 

differentiated effects on weakening the binding of calponin to F-actin.  Deletion of the C-
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terminal tail segment of calponin strongly enhanced the actin-binding and bundling 

activities of all three isoforms, indicating a regulatory inhibition effect of the C-terminal 

variable region [57] [58].  The C-terminal tail regulates the interaction with F-actin by 

altering the function of the second actin-binding site of calponin [59].  These findings 

suggest that C-terminal variable region may determine the cell type-specific functions 

and/or subcellular distributions of the calponin isoforms.  

Role of calponin 2 in the regulation of actin cytoskeleton in non-muscle cells 

Various cellular functions that are regulated by calponin 2 have been identified in 

different cell types.  Calponin 2 was first found to regulate the rate of cell proliferation.  

Significant amounts of calponin 2 are found in growing smooth muscle tissues such as 

embryonic stomach and urinary bladder as well as the uterus during early pregnancy 

[27].  The expression of calponin 2 decreases to lower levels in quiescent adult smooth 

muscle cells while the expression of calponin 1 is up-regulated [27].  Over expression of 

calponin 2 in a rabbit smooth muscle cell line hindered cell proliferation with increased 

number of binuclear cells indicating a blocking of cytokinesis [27].  These data suggest 

that although calponin 2 is an inhibitory regulator, it is required in rapidly proliferating 

cells, possibly as an equilibrium factor for the regulated dynamic changes of the actin 

cytoskeleton during cell proliferation and cytokinesis.     

The dynamics of actin cytoskeleton plays a critical role in cell motility function.  

As an actin-associated protein, calponin 2 regulates cell motility, presumably through 

inhibiting the actin activated myosin motor functions.  Primary fibroblasts isolated from 

calponin 2 knockout mice were found to migrate faster than that of wild type control cells 

[60].  
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Calponin 2 also facilitates adhesion in multiple types of cells.  Significant 

amounts of calponin 2 are found in human and mouse platelets [33].  In a microfluidic 

flow-based thrombosis assay, blood samples from Cnn2 knockout mice exhibits 

prolonged time of platelet accumulation and thrombosis compared to wild-type control 

mice, suggested the weakened adhesion of calponin 2-null platelet [33].  Primary 

fibroblasts isolated from calponin 2 knockout mice were also found weakened adhesion 

that wild-type control cells [60].  The effect of calponin 2 on facilitating the velocity of cell 

adhesion was also shown when prostate cancer cells expression high or low calponin 2 

were compared on substrates of high or low stiffness [2].  

The mechanism by which calponin 2 regulates the functions of actin cytoskeleton 

remains to be investigated.  In addition to stabilization of actin filaments [29], our recent 

study demonstrated that calponin 2-null fibroblasts isolated from Cnn2 knockout mice 

have increased cell traction force that is generated by myosin II motor activity [61].  This 

finding is consistent with the established role of calponin 1 as an inhibitory regulator of 

smooth muscle actomyosin ATPase and contractility [62]. 

Calponin 2 in the regulation of macrophage function 

Macrophages are mobile cells and their actin cytoskeleton plays a fundamental 

role in the adhesion, locomotion and phagocytosis.  These activities are essential for the 

function of macrophages in defensive and autoimmune responses [63].  Significant 

amounts of calponin 2 are found in blood cells of myeloid lineage, indicating a 

regulatory role.  Calponin 2 is known to increase actin cytoskeleton stability and inhibit 

myosin motor activity.  The removal of calponin 2 from macrophages may make the 

actin cytoskeleton more dynamic.  Previous in vitro experimental data demonstrated 
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that calponin 2-null macrophages possessed faster migration ability (Figure 4) and 

enhanced phagocytotic activity (Figure 5) [1].  Macrophages play critical roles in the 

pathogenesis of inflammatory diseases.  Function changes of macrophage may change 

the resolution of inflammatory diseases.  For instance, in global as well as in myeloid 

cell-specific Cnn2 knockout mice, the development of inflammatory arthritis induced by 

anti-glucose-6-phosphate isomerase serum was significantly attenuated as compared 

with that in control mice [64].  These data demonstrate that calponin 2 regulates 

macrophage activities and controlling calponin 2 expression and function in 

macrophages may be explored for applications in the treatment and prevention of 

inflammatory diseases.  

 

Figure 4. Faster migration of 
calponin 2-free macrophages 
during in vitro wound healing. A, 
scratch wounds were made in 
monolayer cultures of peritoneal 
residential macrophage 24 h after 
plating. Healing of the wound by cell 
migration was monitored for 6 h. The 
micrographs showed an earlier 
closure of the wound in the h2-
calponin-free macrophage culture 
than the wild type control. B, SDS-
PAGE and Western blot using RAH2 
antibody on total protein extracts from 
cells collected at the end of the 
wound healing experiments 
confirmed the presence and absence 
of h2-calponin in the wild type and 
Cnn2 knock-out cells, respectively. C, 
quantification of the wound healing 
data demonstrates the faster 
migration rate of the h2-calponin 
knockout macrophages than the wild 
type control. *, p < 0.05. 
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Aims of dissertation research 

Based on these novel findings, the central hypothesis to be investigated in my 

dissertation research is that removal of calponin 2 from macrophages would attenuate 

the development and/or severity of atherosclerosis.  Two integrative Specific Aims are 

pursued: 

Aim 1 is to investigate the overall phenotype of ApoE-/- and systemic Cnn2-/- 

double KO (ApoE-/-,Cnn2-/-) mice and ApoE-/-, myeloid cell-specific Cnn2 KO (ApoE-/-

,Cnn2f/f,lysMcre+) mice in the development of atherosclerosis.  The development of aortic 

atherosclerotic plaques in these mouse models is compared to that in age and sex-

matched ApoE-/- control mice.  The hypothesis is that the deletion of calponin 2 from 

macrophages will attenuate the development of atherosclerosis (Figure 6). 

Figure 5. Calponin 2-free macrophages had enhanced phagocytosis. Residential (A) 
and elicited (B) peritoneal cells isolated from calponin 2 knock-out (KO) and wild type (WT) 
mice were incubated with red fluorescent carboxyl microspheres to test phagocytosis activity. 
In the representative flow cytometric histograms of the F4/80-positive WT and KO 
macrophages, the x axis represents the fluorescent intensity indicating phagocytosis of the 
beads and the y axis indicates the gating for macrophages (upper panels) and the relative 
cell counts (lower panels). The peaks from left to right represent cell populations with no 
bead-ingested, 1 bead ingested, and 2 to more than 5 bead ingested. C, the phagocytosis 
activities measured on peritoneal residential (n = 7 for both WT and KO) and 72-h elicited (n 
= 7 for WT, n = 5 for KO) macrophages are summarized as phagocytosis index (percent of 
beads-ingested cells × mean florescence intensity of cells containing beads). The data 
demonstrated an enhanced phagocytosis activity of both residential and elicited 
macrophages when h2-calponin was absent (*, p < 0.05). 
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Aim 2 is to investigate the cellular and molecular mechanisms of alleviating 

atherosclerosis development in calponin 2-null mice.  Cnn2-/- mouse macrophages and 

derived foam cells are examined for functions such as adhesion, migration and 

phagocytosis.  The cytokine production profiles in Cnn2-/- and control macrophages and 

foam cells are also investigated.  The hypothesis is that deletion of calponin 2 will 

promote macrophage migration and weaken macrophage adhesion, which leads to 

attenuated inflammatory response and atherosclerotic lesion (Figure 6).  

Figure 6. Road map of 
my Specific Aims. Aim 1 
is labeled in blue and Aim 
2 is labeled in green. Aim 
1 is to investigate the 
overall phenotypes in the 
development of 
atherosclerosis of ApoE-/-, 
ApoE-/-,Cnn2-/- and 
ApoE-/-,Cnn2f/f,lysMcre+ 
mice. Aim 2 is to study the 
underlying mechanisms 
focusing on the function 
changes of macrophages 
and derived foam cells.  

To understand the pathogenesis of atherosclerosis has a major impact on 

healthcare and the prevention of coronary heart diseases. Based on the notion that 

atherosclerosis is an inflammatory disease and our recent findings of calponin 2’s role in 

regulating the cytoskeleton-based functions of macrophages, my dissertation research 

will contribute to a better understanding in the regulation of macrophage’s cytoskeleton 

function in the pathogenesis of atherosclerosis and lay fundamental background 

information for future development of effective treatment and prevention of the disease. 

To reflect my training in a broad range of research approaches and other 

contributions that I have made to the field of vascular physiology and pathophysiology 
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research during my Ph.D. study, this dissertation also summarizes the cloning of a 

cDNA encoding mouse Apolipoprotein E (ApoE) protein, expression of recombinant 

ApoE in E. coli culture, and the approach to develop hybridoma monoclonal antibodies 

against ApoE (Chapter 2).  With the critical role of mechanical regulation in calponin’s 

functions in the development of atherosclerosis, the mechanoregulation of a calponin-

related protein, SM22, is investigated in Chapter 4. Related to the mechanical 

environment of vascular tissue, my studies on the physiological contractility of 

cardiomyocytes that are present in the wall of mouse and rat thoracic veins are 

presented in Chapter 5. The results add valuable contributions to our understanding of 

cardiovascular biology and diseases. 
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CHAPTER 2 - CLONING OF cDNA ENCODING MOUSE APOE, EXPRESSION OF 
RECOMBINANT PROTEIN IN BACTERIAL CULTURE, AND APPROACHES TO 

DEVELOPING HYBRIDOMA MONOCLONAL ANTIBODIES  

Abstract 

SDS-PAGE and immunoblotting are essential techniques to detect ApoE protein 

to verify genetically modified mice bearing multiple alleles used in this study.  Taking 

advantages that our laboratory has the capacity to routinely develop and produce 

hybridoma monoclonal antibodies as well as a part of hands on training in molecular 

engineering, the development of anti-ApoE monoclonal antibodies was included in my 

thesis project. cDNA encoding mouse ApoE was reversely transcribed from RNA 

extracted from adult mouse liver tissue. The ApoE cDNA insert was cloned to a Tx3-

included pAED4 vector to facilitate ApoE expression and purification. Tx3-ApoE fusion 

protein was expressed by E. coli BL21-(DE3)pLysS and purified by a Zn (II) affinity 

column. Balb/c mice were immunized with Tx3-ApoE fusion protein and spleen cells 

were harvested for hybridoma production. The positive hybridoma clones were 

screened by indirect ELISA against Tx3-ApoE antigen. The screening results show that 

all the positive clones demonstrated high specificity and affinity against the Tx3 peptides 

in the antigen but none of them was against ApoE. The data indicate that different from 

many other mouse proteins which were effective immunogens for mouse in generating 

specific monoclonal antibodies, ApoE has very weak immunogenicity but served as an 

effective carrier in delivering Tx3 peptides. The fact that mouse ApoE can be 

recognized by the immune system of mouse as an effective carrier intrigued us to test a 

novel approach to generating useful antibodies by immunizing ApoE-KO mice to avoid 

the intrinsic issue of immune tolerance in developing antibody tools against plasma 

proteins like ApoE, especially from the species same as the host to be immunized. 
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Introduction 

Cholesterol is insoluble in plasma and thus packed in lipoproteins when travels in 

blood stream. Cells uptake cholesterol via low density lipoprotein (LDL) receptor [65] 

because cholesterol esters are too hydrophobic to pass through membranes. ApoE 

mediates high-affinity binding of ApoE-containing lipoprotein particles to LDL receptor 

and is responsible for cellular uptake of these particles.  Therefore, homozygous ApoE 

KO mice exhibit high cholesterol in the plasma (five times of normal) and early 

spontaneous atherosclerotic lesions [66]. Mice with ApoE deficiency are broadly used 

as an established model in the study of atherosclerosis [67].  

SDS-PAGE and immunoblotting are essential techniques to detect ApoE protein 

to verify the genetically modified mice bearing multiple alleles used in this study, thus 

the development of anti-ApoE monoclonal antibodies was included in my thesis project. 

Mouse ApoE cDNA was cloned and subcloned into a Tx3-included pAED4 vector for 

facilitating expression. Tx3-ApoE fusion protein was expressed, purified and used for 

Balb/c mice immunization. The positive hybridoma clones were screened by indirect 

ELISA against Tx3-ApoE antigen. The screening results show that all the positive clones 

demonstrated high specificity and affinity against the Tx3 peptides in the antigen but 

none of them was against ApoE. The results indicate that ApoE had very weak 

immunogenicity but served as a good carrier in delivering Tx3 peptides. However, when 

ApoE protein fused with a C-terminal segment of calponin 2, the immunogenicity of 

ApoE was enhanced and specific monoclonal antibodies against ApoE were produced, 

suggesting that carriers and antigenic epitopes exhibit preferences for their conjugation 
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partners, and a specific design of fusion proteins may represent a new approach to 

increasing immunogenicity of antigens and generating targeted monoclonal antibodies. 

Material and Methods 

Cloning of cDNA encoding mouse ApoE  

Total cellular RNA was extracted from adult mouse liver tissue using the TRIzol 

reagent (Invitrogen) according to the manufacturer’s protocol. Integrity of the isolated 

RNA was verified using agarose gel electrophoresis. cDNA encoding ApoE was 

obtained by reverse transcription-coupled polymerase chain reaction (RT-PCR). 

Reverse transcription was carried out using ApoE exon 4 reverse primer and Avian 

Myeloblastosis Virus Reverse Transcriptase (AMVRT).  PCR amplification of the coding 

region of ApoE cDNA without the N-terminal secretion peptide was carried out using the 

following primers: Forward: 5’-CAATTGCGCATATGAAGGCTCTGTG-3’; Reverse: 5’- 

TGGAATTCCTCACAGAGACTCAGA-3’).  The PCR primers were designed to add 

unique restriction enzyme sites: NdeI and EcoRI (Indicated in bold italic font in the 

primer sequence) at the 5’ and 3’ ends of the ApoE cDNA insert, respectively, for 

subsequent cloning into the expression plasmids. 

The ApoE cDNA insert was double digested with NdeI and EcoRI at sites 

engineered in the PCR cloning primers and ligated into a pAED4-based expression 

vector employing an N-terminal fusion tag of 15 amino acids ([HEEAH]3) derived from 

the N-terminal variable region of chicken breast muscle Troponin T (TnT) [68] to 

facilitate the purification via metal affinity chromatography [69] [68]. After transformation 

of JM109 E. coli and plating on ampicillin selection LB plates, antibiotic resistant 

bacterial colonies were selected and screened by PCR to identify the presence and 



www.manaraa.com

 

	

21	

	

appropriate orientation of the ApoE cDNA insert. A positive recombinant plasmid was 

sequenced to confirm the correct insertion of the specific cDNA insert and the absence 

of PCR-generated mutations.   

Large-scale expression of the Tx3-tagged ApoE protein 

Competent BL21-(DE3) pLysS E. coli cells were transformed with the expression 

plasmid encoding mouse ApoE cDNA as described above. Freshly transformed BL21-

(DE3) pLysS colonies were used to inoculate 2X tryptone-yeast broth containing 100 

µg/mL ampicillin and 12.5 µg/mL chloramphenicol [70]. The culture was incubated at 37 

°C with vigorous shaking and induced at OD600 nm ~0.4-0.5 by adding isopropyl 1-thio-b-

D-galactopyranoside (IPTG) to a final concentration of 0.4 mM. The culture was 

continued for another 3 hrs, harvested by centrifugation and resuspended in a lysis 

buffer containing 6 M urea, 1 M KCl and 20 mM phosphate buffer pH 7.4. The pellets 

were lysed by three passes through a French press at 1000 psi. Lysis supernatant was 

clarified by centrifugation and loaded to a Zn(II) affinity chromatography column [69] 

[68]. The fractions containing purified ApoE protein were dialyzed against 0.1% formic 

acid and lyophilized for use in mouse immunization.  

Hybridoma production 

Seven-week old female Balb/c mouse was immunized intraperitoneally (i.p.), 

intramuscularly and subcutaneously with 100 µg purified Tx3-ApoE (50 mM imidazole 

elution fractions) mixed with an equal volume of Freund’s complete adjuvant. At the 

10th day, the mouse was given i.p. boost twice at one-day interval using the same 

amount of antigen diluted with phosphate buffered saline (PBS).  

Cell fusion was carried out at the 13th day after the initial immunization using a 
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method previously described [71].  Briefly, the mouse was sacrificed to collect spleen 

after bleeding for obtaining the immune serum. This extensive bleeding also allows us 

to omit the lysis step for removing red blood cells before fusion. Spleen cells were 

isolated, washed with DMEM and spun down together with washed Sp2/0-MLK myeloma 

cells in a ratio of 8:1 and exposed to 0.6 mL of 50% PEG1500 (American Type Culture 

Collection) containing 7.5% dimethyl sulfoxide (DMSO) in Dulbecco’s modified Eagle’s 

medium (DMEM) at 37 °C for 2.5 min before being slowly diluted with 10 mL warm 

DMEM. After incubation for 10 min at 37 °C, the cells were spun down and gently 

resuspended in 80 mL HAT (0.1 mM hypoxanthine; 0.4 µM aminopterin; 16 µM 

thymidine) selection medium containing 20% fetal bovine serum (FBS) and plated in 

four 96-well cell culture plates. After incubation at 37 °C for 5 days, ~50µL of fresh HAT 

medium was added to each well. After 7 days, half of the medium in each well was 

replaced by HT media (0.1 mM hypoxanthine; 16 µM thymidine) containing 20% FBS. 

Enzyme-linked immunosorbent assay (ELISA) and immunoblotting screening of 
positive hybridomas and limiting dilution subcloning 

The hybridoma screening was carried out using indirect ELISA. 100 µL of the 

immunogen (Tx3-ApoE fusion protein, 2 µg/ml) in carbonate buffer was coated on 96-

well microtiter plate and incubated at 4 °C overnight.  After washing to remove free 

protein, 100 µL of hybridoma culture supernatant was added at 37 °C and incubated for 

2 h. Then the plate was washed and processed to incubate with horseradish 

peroxidase-conjugated anti-mouse immunoglobulin second antibody (Santa Cruz 

Biotechnology), and H2O2/2,2’-azinobis (3-ethylbenzothiazolinesulfonic acid) substrate 

reaction. Absorbance at 415 nm of each well was recorded at a series of time points 

during the substrate development using an automated microplate reader (Bio-Rad 
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Benchmark).  

The positive colonies were confirmed with Western blotting. Briefly, Tx3-ApoE 

fusion protein was resolved on 14% Laemmli gel with an acrylamide:bisacrylamide ratio 

of 180:1.  The gel was electrically blotted to nitrocellulose membranes using a semidry 

transfer apparatus (Bio-Rad, Hercules, CA). The membranes were incubated with 

culture supernatant from ELISA positive hybridomas at 4 °C overnight.  After washes, 

the membranes were incubated with alkaline phosphatase-conjugated anti-mouse IgG 

as second antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) at room 

temperature for 1 h, washed again and developed in 5-bromo-4-chloro-3-

indolylphosphate/nitro blue tetrazolium substrate solution to visualize the protein bands.  

The positive hybridomas were subcloned multiple times using limiting dilution 

method to obtain stable cell lines (9 times for 3C10 and 7 times for 3C11). The stable 

hybridoma cell lines were stored in liquid nitrogen in multiple vials and introduced into 

Pristane-primed peritoneal cavity of Balb/c mice to produce hybridoma ascites fluids 

that are enriched with the specific monoclonal antibodies.  After centrifugation 

clarification to remove cell debrides, the monoclonal antibody ascites fluids were 

lyophilized for long term storage or made into 50% glycerol stock and stored at -20 °C 

for daily use. 

Immunoglobulin isotyping of monoclonal antibodies 

The subclass of immunoglobulins was determined using a Mouse 

Immunoglobulin Isotyping ELISA Kit (BD PharmingenTM).  The wells of microtiter plate 

were coated 4 °C overnight with rat anti-mouseIgG1, IgG2a, IgG2b, IgG3, IgM, IgA, Igk or 

Igg purified monoclonal antibodies.  Each hybridoma culture supernatant was then 
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added to one set of the isotype-specific anti-body coated wells for standard sandwich 

ELISA test. The results showed that 3C10 and 3C11 are both IgG1k. 

ELISA titration of monoclonal antibodies 

For optimization of working dilution of monoclonal antibodies, affinity titration was 

performed. Purified chicken Tx-TnT protein was dissolved at 5 μg/mL and coated as the 

antigen on 96-well microtiter plate at 4 °C overnight.  After washing to remove free 

protein, serial dilutions (1:10) of hybridoma culture supernatant or mouse ascites fluid 

were added and incubated at 37 °C for 2 h. The fresh culture medium or normal mouse 

serum at the same dilutions was used as negative control.  Then the plate was 

processed with standard ELISA procedure as described above. The experiments were 

performed in triplicate wells. 

 

Results 

Mouse ApoE cDNA cloning and ApoE protein preparation 

The agarose gel in Figure 7 shows Total RNA extracted from mouse brain and 

liver and ApoE cDNA amplified with RT-PCR. The ApoE RNA extracted from liver was 

used as template for subsequent reverse transcription. A band of ~1-kb in size was 

observed by PCR amplification of the RT product (the predicted size is 935-bp).  Figure 

8 shows a circular map of recombined pADED4-Tx3 plasmid containing ApoE cDNA. 

Compared to the low expression level of ApoE alone in BL21-(DE3)pLysS E. coli, the 

expression efficiency of ApoE protein is dramatically increased with the N-terminal 

fusion of Tx3 tag (Figure 9).  Tx3 tagged ApoE protein was purified using Zn (II) affinity 

chromatography (Figure 10).  The Tx3-ApoE fusion protein exhibits an elution peak at 
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50-60 mM imidazole. 

 
Figure 7. ApoE RNA extraction and cDNA 
amplification. A: Total RNA was extracted from 
mouse liver and brain tissue. Agarose gel 
depicted the two subunits of eukaryotic 
ribosomal RNA: 28S and 18S. B: PCR 
amplification of ApoE cDNA from mouse liver 
RNA. The agarose gel shows the specific ~1-kb 
product of ApoE cDNA. 
 

 
 
Figure 8. Map of recombined pADED4-Tx3 vector and 
ApoE cDNA. ApoE cDNA was ligated into pAED4-Tx3 
vector with NdeI and EcoRI digested 5’ and 3’ sticky 
ends, respectively. The Tx3 segment is incorporated at 
the NH2-terminal of ApoE polypeptide. Protein 
expression is driven by the inducible T7 RNA 
polymerase. 
 
 
 

 
 
Figure 9. IPTG-induced expression of ApoE  
and Tx3-tagged ApoE in BL21-(DE3) pLysS E. 
coli. A: SDS-PAGE examined protein 
expression after 3 h IPTG induction in ApoE 
pAED4 transformed BL21-(DE3) pLysS Ecoli. 
No free ApoE band was found in induced E.coli. 
B: SDS-PAGE with bacteria lysis from Tx3-ApoE 
PAED4 plasmid transformed BL21-(DE3) pLysS 
Ecoli showed after incorporation of NH2-terminal 
Tx3 tag, the expression of Tx3-ApoE was 
dramatically increased. 
 
 

Titer of monoclonal antibodies 3C10 and 3C11 

 Serial dilutions (10-1, 10-2, 10-3, 10-4 and 10-5) of 3C10 and 3C11 hybridoma 
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Figure 11. Comparison of ELISA titration curves of 3C10 and 3C11 hybridoma culture 
supernatants against chicken breast muscle Tx-TnT. The X-axis in both A and B is the series 
dilutions (10-1, 10-2, 10-3, 10-4 and 10-5) of 3C10 and 3C11 hybridoma supernatants in -log10 unit. 
The Y-axis in A is the absolute O.D. value at 20 min development and the Y-axis in B is the 
titration curves normalized to the maximal O.D. value of each antibody.	

culture supernatant were tested with indirect ELISA against chicken breast muscle Tx-

TnT. For 3C11, 10-2 dilution maintained 90% of the maximal O.D., and 10-3 dropped to 

35%. For 3C10, 10-2 dilution resulted in 70% of the maximal O.D. and 10-3 fell to 20% 

(Figure 11).  Therefore, 3C11 demonstrated higher apparent affinity to chicken breast 

muscle Tx-TnT than does 3C10.  

 
 
 
Figure 10. Zn(II) affinity column 
purification of Tx3-ApoE. SDS-PAGE was 
performed to analyze the elution profile. Un-
induced and IPTG-induced bacterial lysis 
were loaded as controls. Most un-bound 
proteins were washed out in the flow-through 
from the Zn(II) column. The affinity-bound 
protein was eluted with increasing 
concentrations of imidazole. The peak 
elution of Tx3-ApoE is between imidazole 
concentrations of 50 mM and 60 mM. 
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Specific monoclonal antibodies against the Tx epitope 

3C10 and 3C11 hybridoma cells were introduced into Pristane-primed peritoneal 

cavity of Balb/c mice to produce hybridoma ascites fluids that are enriched with specific 

monoclonal antibodies. Figure 12 is a Western blotting characterization to demonstrate 

the specificity of monoclonal antibody 3C11 in recognizing the Tx tag on different fusion 

proteins and in chicken breast muscle fast Troponin T (Tx-TnT) that naturally contains 

the Tx segment. The results show that regardless the hosting environment of the Tx 

epitope, monoclonal antibody 3C11 effectively identified the Tx epitope specifically and 

with high affinity. Interestingly, at the same amounts of protein input as shown in the 

accompanying SDS gel Tx9-GRP94 which contains 9 Tx repeats was recognized by 

3C11 monoclonal antibody in much higher intensity than that of Tx2-GRP94 containing 

only 2 Tx repeats in the Western blot under same conditions. The results indicate that 

the Tx9 tag contains multiple epitopes which can be simultaneously bound by multiple 

monoclonal antibody 3C11.  

Figure 12. Western blotting using 3C11 
ascites fluid against different Tx-fusion 
proteins and chicken breast muscle. Tx-
fusion proteins Tx2-GRP94, Tx2-msTnT 
(mouse slow troponin T), Tx3-ApoE, Tx3-
mfTnT, Tx7-msTnT (mouse fast troponin 
T), and Tx9-GRP94 previously produced in 
our lab were used to examine the 
specificity of 3C11 monoclonal antibody. 
The SDS gel displays the loading of 
purified Tx-fusion proteins and total protein 
extracted from chicken breast muscle. The 
3C11 Western blot demonstrates that 
regardless the fusion environment of Tx 
epitope, 3C11 monoclonal antibody can 
identify the Tx repeats specifically and with 
high affinity. The fast troponin T in chicken 
breast muscle contains 7 Tx repeats, 
which can also be recognized by 3C11.   
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Discussion 

Monoclonal antibodies (mAbs) are important tools in basic science research as 

well as clinical diagnosis and therapy. From the time the first hybridoma monoclonal 

antibody was reported in 1975, the field of hybridoma technology has been rapidly 

advanced in producing mAbs with high specificity and affinity.  

Antigen presenting and monoclonal antibody generation 

Monoclonal antibodies are homogenous antibodies which bind to the same 

epitope and are produced from a single B-lymphocyte clone [72]. In the course of 

normal immune response, pathogens are recognized by the immune system as foreign 

(antigen), and eliminated or effectively neutralized to reduce their potential damage. 

After recognizing an antigen, antigen presenting cells (APCs) such as dendritic cells 

engulf and digest it in the lysosomes.  Within the lysosome, the antigen is degraded into 

small peptides. The individual peptides are complexed with histocompatibility

complex class II (MHC class II) and presented on the membrane surface of APCs. 

APCs present the processed antigen to a T helper cell (CD4+), which later active B cell 

and induce B cell maturation and antibody production. Therefore, the structure of 

protein epitopes plays a critical role in antigen presenting and B cell activation and 

antibody production. 

Immunogenicity of Tx segment and ApoE 

Tx segment is defined as the 4-9 repeats of a sequence motif His-(Glu/Ala)-Glu-

Ala-His specifically existed in the NH2-terminal hypervariable region of troponin T (TnT) 

from avian pectoral muscle [73]. TnT is the tropomyosin (Tm) – binding subunit of the 

troponin complex and plays an essential role in the Ca2+ regulation of vertebrate striated 
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muscle contraction [74]. Three homologous genes encode cardiac and slow and fast 

skeletal muscle isoforms of TnT and alternative RNA splicing further produce multiple 

species and tissue-specific TnT splice forms with functional significance [75] [76] [77] 

[78]. An intriguing example is the presence of Tx-TnT (the repeating His pairs ([H-X-X-

X-H] x; designated Tx) at the NH2-terminal hypervariable region of TnT in avian pectoral 

muscle [79] [80] [78]. It has been shown that the Tx segment is a cluster of transition 

metal ion (Zn2+, Cu2+, Ni2+ and Co2+) binding site [81] and the inclusion of the Tx 

segment results in a more negative NH2-terminal charge compared to other fast skeletal 

muscle TnTs [82] [83]. Acidic TnT isoforms is less sensitive to acidosis [84] and exhibits 

higher sensitivity to Ca2+ in the development of force [85], therefore the evolution of 

avian pectoral TnT and Tx element may reflect functional adaption of flight muscle [73].  

Besides the physiological functions in avian breast muscle, Tx segment was 

found able to facilitate protein expression and purification due to its high metal-binding 

affinity. After incorporated with Tx segment at the N-terminal, ApoE protein also 

achieved higher level expression in E. coli and was effectively purified through Zn (II) 

affinity chromatography [69], (Figs. 8, 9 and 10).  Therefore, Tx3 peptides have been 

often used as a tag for protein expression and purification. In this study, it was found 

that Tx segment exhibits strong immunogenicity when fused with ApoE protein. Tx 

segment structure seems particularly recognizable by the immune system possibly due 

to its unique structure.  However, the Tx segment is not strongly immunogenic by itself 

because of the small size.  On the other hand, ApoE is a plasma lipoprotein and should 

be immunologically tolerated after de novo and chronic exposure to the immune cells. 

Therefore, our result is interesting by showing that ApoE possesses very weak 
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immunogenicity but served as an effective carrier to deliver the Tx epitope to elucidate 

immune responses.  

Effective enhancement of immunogenicity of ApoE by a C-terminal segment of 
calponin 2 

ApoE plays key roles in lipid transport and mediating cell lipid uptake through 

low-density lipoprotein receptor (LDLR). To carry out these two essential physiological 

functions, ApoE protein has a N terminal region able to interact with the LDLR [86] and 

a C-terminal domain of micromolar binding affinity to phospholipid [87] [88]. In the lipid-

free state, ApoE is partially folded which gives ApoE flexibility and adaptability for the 

substantial conformational changes that accompany lipid or ligand binding [89] [90]. For 

example, upon binding of lipid, ApoE conformation undergoes a considerable change: 

Lipid-free ApoE does not bind with high affinity to LDLR. For high-affinity binding, ApoE 

must be associated with lipid [91]. The features of partially folding and structure 

flexibility provide the possibilities to expose different epitopes when ApoE was folded 

differently. 

In an attempt to generate a fusion immunogen with enhanced immunogenicity, 

we fused the C-terminal tail 85 amino acid segment (C85) of calponin 2 that contains 

mainly acidic amino acids and also has very weak immunogenicity with ApoE. A 

hybridoma fusion trial showed that the combination of two very weak immunogens did 

not readily increase the immunogenicity of either of the two proteins. Therefore, the 

altering of folded structure alone may not be an effective approach in this development.  

In summary, ApoE is the key protein involved in cholesterol transportation and 

metabolism. ApoE has a unique structure which allows lipids binding as well as the 

binding ability to LDLR.  ApoE alone is not well expressed in E. coli, but adding the Tx 
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segment at the N-terminal of ApoE significantly increased the expression of Tx3-ApoE 

fusion protein.  When fused with Tx3 peptides, ApoE serves as an exceptional carrier to 

present the Tx epitope to the immune system. This observation indicates that mouse 

immune system is able to recognize ApoE although is tolerated when one attempts to 

produce high affinity antibody as research tools. We are now in the process of testing 

immune response to mouse ApoE in ApoE-/- mice [105] in which the de novo deletion of 

ApoE expression should have prevented the development of immune tolerance. The 

effectiveness of this potentially novel approach to increasing immunogenicity of 

antigens and generating useful monoclonal antibodies remains to be evaluated.   
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CHAPTER 3 - DELETION OF CALPONIN 2 IN MACROPHAGES ALTERS 
CYTOSKELETON-BASED FUNCTIONS AND ATTENUATES THE DEVELOPMENT 

OF ATHEROSCLEROSIS 

(Chapter contains previously published material. See Appendix C) 

Abstract  

Arterial atherosclerosis is an inflammatory disease. Macrophages play a major 

role in the pathogenesis and progression of atherosclerotic lesions. Modulation of 

macrophage function is a therapeutic target for the treatment of atherosclerosis.  

Calponin is an actin-filament-associated regulatory protein that inhibits the activity of 

myosin-ATPase and dynamics of the actin cytoskeleton.  Encoded by the Cnn2 gene, 

calponin isoform 2 is expressed at significant levels in macrophages.  Deletion of 

calponin 2 increases macrophage migration and phagocytosis.  In the present study, we 

investigated the effect of deletion of calponin 2 in macrophages on the pathogenesis 

and development of atherosclerosis.  The results showed that macrophages isolated 

from Cnn2 knockout mice ingested the same level of acetylated low-density lipoprotein 

(LDL) as that of wild type (WT) macrophages but the resulting foam cells had 

significantly less impaired velocity of migration.  Systemic or myeloid cell-specific Cnn2 

knockouts effectively attenuated the development of arterial atherosclerosis lesions with 

less macrophage infiltration in apolipoprotein E knockout mice.  Consistently, calponin 

2-null macrophages produced less pro-inflammatory cytokines than that of WT 

macrophages, and the up-regulation of pro-inflammatory cytokines in foam cells was 

also attenuated by the deletion of calponin 2.  Calponin 2-null macrophages and foam 

cells have significantly weakened cell adhesion, indicating a role of cytoskeleton 

regulation in macrophage functions and inflammatory responses, and a novel 

therapeutic target for the treatment of arterial atherosclerosis. 
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Introduction 

Atherosclerosis is the primary cause of ischemic heart disease and stroke.  In the 

past two decades, studies have established that atherosclerosis is an inflammatory 

disease [5] [6] [7].  Increasing levels of circulating low-density lipoprotein (LDL)-

cholesterol and the subsequent intramural accumulation of oxidized LDL trigger the 

recruitment and retention of monocytes to generate subendothelial lesions in arterial 

wall [92].  In the intima of vessel wall, monocytes differentiate into macrophages to 

scavenge lipoprotein particles and become foam cells, which is a landmark of 

atherosclerosis [92].  Macrophages and the lipid ingestion-generated foam cells play 

active roles in mediating the ensuing inflammatory response and prognosis of 

atherosclerosis plaques [93].  Therefore, the regulation of macrophage activation and 

function has become a focus of the exploration of new therapeutic approaches for 

arterial atherosclerosis.  

To date, the regulation of macrophage function in atherosclerosis and other 

inflammatory diseases has been investigated mainly in the context of ligand-receptor 

recognitions and the effects on cell signaling.  While the motility and substrate adhesion 

of macrophages play essential roles in the development and resolution of inflammation 

[19] [20], very little is known about how the regulation and mechanisms by which these 

cytoskeleton mechanical tension-based functions determine the development and 

prognosis of atherosclerosis.  

Calponin is a family of actin filament-associated regulatory proteins of 34–37 kDa 

(292–330 amino acids) in size found in smooth muscle [94] and many non-muscle cell 

types [29] [30].  Through high affinity binding to F-actin, calponin inhibits the actin-
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activated myosin MgATPase [49] [50] [51] and motor activity [52] [53].  Three isoforms 

of calponin have been found in vertebrate species: A basic calponin (calponin 1, 

isoelectric point (pI) = 9.4) expresses specifically in mature smooth muscle cells and 

functions in regulating smooth muscle contractility [27, 55, 95, 62, 56].  An acidic 

calponin (calponin 3, pI = 5.2) is found in brain [35], embryonic trophoblasts [41] and 

myoblasts [40] to participate in cell fusion during embryonic development and 

myogenesis.  Calponin 2 is an isoform with neutral overall charge (pI=7.5) and presents 

in a broad range of tissue and cell types, including smooth muscle cells [27], endothelial 

cells [31], epithelial cells, fibroblasts [29, 30], and myeloid leukocytes [1].  Via 

decreasing the dynamics and stabilizing the actin cytoskeleton, calponin 2 regulates 

many actin-cytoskeleton-based cellular functions such as increasing substrate adhesion 

and inhibiting migration and cytokinesis.  

Calponin 2 is expressed at significant levels in macrophages.  A previous study 

in our laboratory has demonstrated that calponin 2 regulates migration and 

phagocytosis of macrophages.  Peritoneal macrophages isolated from Cnn2 gene 

knockout (KO) mice exhibited a faster rate of migration and enhanced phagocytosis 

than that of wild type (WT) control cells, indicating a regulatory role of calponin 2 in the 

fundamental function of macrophages [1].  Following this novel discovery, the present 

study investigated the effect of deleting calponin 2 in macrophages on the pathogenesis 

and development of arterial atherosclerosis.  Using cellular and in vivo mouse models, 

the experiments demonstrated that macrophages isolated from Cnn2 KO mice ingest 

the same level of LDL as that of WT macrophages but the resulting foam cells had less 

impaired migration.  Consistently, Cnn2 KO in myeloid cells effectively attenuated the 
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development of arterial atherosclerosis lesions in apolipoprotein E knockout mice.  

Supporting the identification of calponin 2 as a novel therapeutic target, calponin 2-null 

macrophages produce less pro-inflammatory cytokines than that of WT macrophages, 

and the up-regulation of pro-inflammatory cytokines in foam cells was also attenuated 

by the deletion of calponin 2.  Calponin 2 null macrophages exhibit a weakened 

adhesion to substrate, linking a cytoskeleton regulation to macrophage activity and 

inflammatory response. 

Materials and Methods 

Genetically modified mice 

All animal studies were carried out under protocols approved by the Institutional 

Animal Care and Use Committee of Wayne State University.  

The generation and initial characterization of Cnn2-floxed (Cnn2f/f) mice and 

induction of systemic Cnn2 KO have been described previously [1].  The colony of 

Cnn2-/- mice have been back breeding with wild type C57BL/6 mice for 9 or more 

generations, ensuring >99% C57BL/6 genetic background.  Myeloid cell-specific Cnn2 

KO mice (Cnn2f/f,lysMcre+) were generated by cross-breeding Cnn2f/f mice with lysMcre+ 

mice, a transgenic line bearing a Cre recombinase gene driven by lysM promoter [96] 

[64].  The effectiveness of lysM-Cre induced floxed-calponion 2 deletion in myeloid cells 

was assessed in the recent publication in our lab. In Cnn2f/f,lysMcre+ mice, calponin 2 is 

undetectable by immunoblotting in macrophages but unaffected in the skin tissue (a 

representative control tissue) [64].  Apolipoprotein E (ApoE) gene KO mice [97] 

(C57BL/6 strain) were purchased from TACONIC. ApoE-/-,Cnn2-/- double homozygotes 

and ApoE-/-,Cnn2f/f,lysMcre+ triple transgenic mice were produced by crossing ApoE-/- 
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with Cnn2-/- and Cnn2f/f,lysMcre lines, respectively.  Genotypes of these experimental 

mice were confirmed using PCR and verified post mortem using Western blot analysis.  

Preparation and culture of mouse macrophages 

Residential peritoneal macrophages were lavaged with pre-warmed RPMI 1640 

medium from WT and Cnn2-/- mice.  Elicited mouse peritoneal macrophages were 

obtained by injection of 2 mL of sterile 3% thioglycollate broth for 72 h prior to lavage.  A 

fixed volume (8 mL) of medium was used for each animal so the total number of cells 

lavaged could be compared.  The cells collected were cultured in RPMI-1640 medium 

containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 i.u./mL penicillin and 

50 i.u./mL streptomycin at 37°C in 5% CO2 unless specified.  

Macrophage lipid engulfment  

Residential peritoneal macrophages were isolated from WT and Cnn2-/- mice as 

above and seeded onto pre-cleaned coverslips in a 48-well culture plate in RPMI 1640 

medium containing 10% FBS.  Cells were allowed to adhere to the coverslips at 37°C 

overnight.  Non-adherent cells were removed by gentle washing with pre-warmed RPMI 

1640 medium.  The adherent macrophages were processed for experiments as 

described [98].  To load the macrophages with lipid, the culture medium was switched to 

RPMI 1640 containing 10% FBS and 25 µg/mL acetylated LDL (BT-906, Alfa Aesar).  

The cells on coverslips were fixed at 4 hrs, 8 hrs and 24 hrs of lipid loading and the 

formation of lipid laden foam cells was examined by staining the intracellular lipid 

droplets with 60% Oil Red O (O0625, Sigma-Aldrich) in isopropanol at room 

temperature for 5 minutes.  Cell nucleus was counter-stained with Mayer’s hematoxylin 

(26043-06, Sigma-Aldrich) for 5 min.  The stained coverslips were mounted on glass 
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slides and photographed using a Zeiss Axiovert 100 microscope.  The formation of foam 

cells was quantified in at least 10 representative view fields in different areas of each 

coverslip using ImageJ 64 software (NIH, Bethesda, MD).  The assay was performed in 

a genotype-blinded manner.  

SDS-polyacrylamide gel electrophoresis (PAGE) and Western blotting 

SDS-PAGE and Western blotting were carried out as previously described [1].  

Samples of fresh or cultured macrophages were washed with phosphate-buffered saline 

(PBS) and lysed in SDS-PAGE sample buffer containing 2% SDS.  Total protein was 

extracted by sonication and heated at 80°C for 5 min.  Urinary bladder tissues were 

examined to verify genotypes and the SDS-PAGE samples were prepared similarly, in 

which the extraction of protein was done by mechanical homogenization. 

The protein extracts were analyzed using 12% gel in Laemmli buffer system with 

an acrylamide: bisacrylamide ratio of 29:1.  After electrophoresis, the gels were fixed 

and stained with Coomassie Blue R-250 to verify sample integrity and normalize protein 

input.  Duplicated gels were electrically blotted on nitrocellulose membrane using a Bio-

Rad semi-dry transfer apparatus for Western blot analysis.  The membrane was 

incubated with a rabbit antiserum, RAH2, which was raised against mouse calponin 2 

immunogen and has weaker cross-reaction to calponin 1 [95] or a mouse anti-calponin 

1 monoclonal antibody (mAb) CP1 [26] in Tris-buffered saline containing 0.1% bovine 

serum albumin (BSA).  The calponin bands recognized by the first antibody were 

revealed using alkaline phosphatase-labeled anti-rabbit IgG or anti-mouse IgG second 

antibody (Santa Cruz Biotechnology) and 5-bromo-4-chloro-3-indolyl phosphate/nitro 

blue tetrazolium chromogenic substrate reaction. 
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In vitro wound healing assay 

Elicited mouse peritoneal macrophages were seeded in glass-bottom dishes 

(P35G-0-14-C, MatTek) at 1.5x106 per microwell for adhesion at high-density.  Foam 

cells were produced by incubating the adhered macrophages with 50 µg/mL acetylated 

LDL for 24 hours.  The monolayers of confluent macrophages and foam cells were 

wounded by scratching using a thin pipette tip.  Care was taken to produce uniformly 

sized wounds of approximately 300 µm in width. The detached cells were washed away 

with culture medium containing 10% FBS.  

The scratch-wounded monolayer cultures were incubated in 5% CO2 at 37°C in a 

stage top incubator (Model TC-124A, Warner Instruments) mounted on an inverted 

microscope (Zeiss Axiovert 100, Germany).  Closure of the wound was monitored using 

an attached digital camera (AmScope).  The wound area of each recorded field was 

measured using ImageJ64 MRI wound healing and ROI tools (NIH, Bethesda, MD).  

The assay was performed in a genotype-blinded manner. 

Examination and quantification of aortic atherosclerotic lesions 

6.5-month-old male and female mice were studied. Lesion development in the 

aortae was determined using the en face method [99].  The entire aorta was removed, 

cleaned for periadventitial fat and carefully cut open longitudinally.  The opened aorta 

was then pinned on a dark color board and stained with 60% Oil Red O at room 

temperature for 50 minutes.  The aorta tissue was examined under a dissection scope 

and photographed.  The images were analysis with ImageJ64 software.  The area 

examined covered both thoracic and abdominal regions defined as the segment from 

0.8 mm before the branch point of the innominate artery to the iliac bifurcation, including 
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0.5 mm of the large branching vessels at the aortic arch.  

Atherosclerosis lesion at the aortic root was studied in tissue cross-sections. 

Briefly, the base of the heart including the most proximal part of the ascending aorta 

was excised and embedded in O.C.T. compound (Tissue-Tek, 4583).  The tissue piece 

was oriented to have all three aortic valves in the same geometric plane.  The portion 

containing the aortic root was cut consecutively into 8 µm sections, starting from the 

commissures of the aortic cusps, using a Leica CM 1950 cryostat.  Sections were 

collected on Fisher Superfrost Plus-coated slides following a scheme similar to that 

described previously [100], processed for Oil Red O, hematoxylin, and eosin stain after 

fixation in 3.7% formaldehyde.  The slides were imaged and the aortic root lesion area 

was determined using ImageJ64 software. 

Immunohistochemistry 

Aortic root sections were fixed in 75% acetone with 25% ethanol for 10 min and 

blocked in PBS containing 0.05% Tween-20 and 1% BSA at room temperature for 30 

min.  Endogenous peroxidase was inactivated by incubation with 1% H2O2 in PBS at 

room temperature for 10 min.  After wash with PBS, the sections were stained with a rat 

mAb against mouse CD68 (Bio-Rad MCA 1957) or normal rat serum control at room 

temperature for 2 hrs.  After washing with PBS-Tween-20 to remove excess primary 

antibody, the sections were incubated with horseradish peroxidase-conjugated anti-rat 

secondary antibody (SouthernBiotech, 3050-05) at room temperature for 1 hr.  Washed 

with PBS-Tween-20 again to remove excess secondary antibody, the labeling of CD68 

was visualized via 3,3’-diaminobenzidine-H2O2 substrate reaction in a dark box for 1 

min.  The reaction was stopped by repeating washes with 20 mM Tris-HCl, pH 7.6. 
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Nuclei were then counterstained with Hematoxylin.  Slides were mounted with cover 

slips and imaged.  The areas of macrophage infiltration were determined using 

ImageJ64 software. 

Multiplexed cytokine analysis 

Peritoneal residential macrophages were isolated from WT and Cnn2-/- mice as 

above and seeded in 24-well plates at 2x106 per well in RPMI 1640 medium containing 

10% FBS.  The adherent cells were cultured at 37°C in RPMI 1640 medium containing 

10% FBS.  Foam cells were produced by replacing the culture medium with RPMI 1640 

containing 10% FBS and 100 µg/ml acetylated LDL.  After 48 hrs of culture, the cells 

were gently washed twice with PBS and total protein contents were extracted with a 

lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 0.5% IGEPAL CA-630 (Sigma 

I3021), 1 mM EDTA and protease inhibitor cocktail (13911, Sigma-Aldrich).  After sitting 

on ice for 20 min, the cell lysates were transferred to centrifuge tubes and centrifuged in 

a microcentrifuge at 14,000 rpm, 4°C for 10 min.  The clarified supernatant was 

collected and stored at -80°C.  Cytokine/chemokine levels in the samples were 

quantified using bead-based multiplex immunoassays at a commercial service facility 

(Eve Technologies).  The results were normalized to the level of total protein 

determined using SDS-PAGE densitometry. 

Cell adhesion assay 

Freshly isolated peritoneal residential cells from WT and Cnn2-/- mice were 

seeded in multiple 12-well plates at the density of 2.5x105 cells per well in 500 µl RPMI-

1640 medium containing 10% FBS.  The WT and Cnn2-/- cells were seeded on the 

same plate to ensure parallel washing conditions.  At a series of time points, non-
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adherent cells were removed by gentle washing with pre-warmed RPMI-1640 medium 

for three times.  The adherent cells were then fixed immediately in the wells with 1% 

glutaraldehyde for 30 min.  A seeding control plate of cells was fixed directly without 

washing by adding 50 µl 11% glutaraldehyde into each well (for a final concentration of 

glutaraldehyde of 1%).  

The fixed plates were washed three times by submersion in deionized water, air-

dried, and stained by adding 500 µL of 0.1% Crystal Violet in 20 mM MES buffer, pH 

6.0.  After shaking at room temperature for 20 min, the plates were washed with 

deionized water to remove excess crystal violet dye and air-dried prior to solubilizing the 

bound dye in 120 µL of 10% acetic acid. 100 µL of the dye extract was transferred from 

each well to a 96-well plate for quantification [101].  A595 nm values were measured with 

a reference wavelength of 655 nm using a Bio-Rad Benchmark automated microplate 

reader. The experiments were done in triplicate wells and repeated.  

Isolation and culture of mouse skin fibroblasts 

Fibroblasts were isolated as described previously from the back skin of neonatal 

WT and Cnn2-/- mice [102].  Briefly, 3-4 days old mice were euthanized and soaked in 

70% ethanol for 2 minutes before removing the skin around torso under sterile 

condition. In a 35 mm culture dish, the skin was incubated with 0.5% trypsin (9002-07-7 

GIBCO) in DMEM at 37°C for 1 hr.  After washing with DMEM, the tissue was minced 

into fine pieces using a sharp razor for digestion in 2 mL of 700 U/mL collagenase I 

(M3A14008A Worthington) in DMEM at 37°C for 2 hrs in a 15 mL centrifuge tube with 

agitation every 20 minutes by gentle shaking.  2 mL ice-cold DMEM containing 20% 

FBS was then added and the tube was vortex 5 seconds for 5 times.  The tissue 
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suspension was pipetted up and down several times and the isolated cells were passed 

through a 100 µm nylon mesh.  The cells were collected by centrifugation at 150 x g for 

5 minutes and re-suspend in 8 mL DMEM containing 20% FBS for culture at 37°C in 5% 

CO2.  Soon after becoming confluent, the P0 cells from each mouse were expanded into 

four 100 mm dishes to prepare 8-10 vials of frozen stock of P1 cells (0.5 to 1 million cells 

per vial).  Urinary bladder of each mouse was examined using Western blot as above to 

verify the Cnn2-/- and WT genotypes.  The frozen cells were stored in liquid nitrogen 

before being thawed and passed one more time (P2) for experiments. 

Immunofluorescence microscopy 

Mouse skin fibroblasts and peritoneal macrophages were cultured on pre-

cleaned glass coverslips.  After adherent culture for 24 hrs, pre-confluent cells on the 

coverslips were fixed with cold acetone or 4% paraformaldehyde for 15 min.  After 

blocking with 1% BSA in PBS at room temperature for 30 min (paraformaldehyde fixed 

cover slips were penetrated with 0.5% Triton X-100 for 10 min prior to blocking), the 

coverslips were incubated with anti-calponin 2 mAb 1D11 [30], anti-calponin 2 rabbit 

polyclonal Ab RAH2 [95], anti-tropomyosin mAb CG3 [103], anti-paxillin mAb 5H11 

(EMD Millipore 05-417), and an anti-non-muscle myosin IIA rabbit polyclonal Ab 

(Abcam, ab24762) at 4°C overnight.  After washes with PBS containing 0.05% Tween-

20, the coverslips were stained with corresponded secondary antibodies: Fluorescein 

isothiocyanate (FITC)-conjugated goat anti-mouse IgG (Sigma, F1010), FITC-

conjugated sheep anti-rabbit IgG (Sigma, F7512), tetramethylrhodamine isothiocyanate 

(TRITC)-conjugated goat anti-rabbit IgG (Sigma, T6778) and TRITC-conjugated 

phalloidin (Sigma P1951) (for actin filaments) at room temperature for 1 hr.  After final 
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washes with PBS containing 0.05% Tween-20, the coverslips were mounted on glass 

slides and examined using fluorescence confocal microscopy for the cellular 

localizations of calponin 2 in macrophages and fibroblasts in relationship to the other 

cytoskeleton proteins.  

Data analysis 

All quantitative data are presented as mean ± SEM.  Statistical analysis was 

done with Student’s test or two-way ANOVA using the Origin software (two-tailed 

assays unless noted in the figure legend). 

Results 

Cnn2-/- macrophages retain the ability of lipid uptake 

Our previous studies demonstrated that Cnn2-/- macrophages have enhanced 

phagocytotic activity, which was assessed by the uptake of mouse serum-coated 

fluorescent latex beads [1].  Different from the non-specific phagocytosis of beads, the 

uptake of lipid complex by macrophages is a scavenger receptor-mediated engulfment, 

and also related to the intracellular cholesterol metabolism in macrophages.  Therefore, 

here we first examined whether deletion of calponin 2 affects the lipid uptake ability of 

macrophages.  Peritoneal residential macrophages from Cnn2-/- and WT mice were 

studies and the formation of foam cells were examined after 4, 8 and 24 hrs of 

incubation with acetylated LDL.  The results showed that intracellular lipid droplets were 

significantly increased during the course of incubation in both WT and Cnn2-/- groups. 

No difference was detected at any of the time points studied (Figure 13).  

Deletion of calponin 2 compensates for the impaired motility of lipid-laden foam 
cells  

The intrinsic motility of calponin 2-null macrophages and foam cells were 



www.manaraa.com

 

	

44	

	

investigated in the absence of chemotactic stimulation.  In vitro wound healing assay in 

monolayer cell cultures was used for measuring the rate of two-dimensional cell 

migration.  To obtain confluent monolayer cultures, elicited peritoneal macrophages 

were used in the assay.  The SDS-gel and Western blots in Figure 14A demonstrated 

similar levels of calponin 2 expressed in residential and elicited mouse peritoneal 

macrophages.  Figure 14B further shows the effective lipid loading in the production of 

foam cells for use in the wound healing assays. 

The wound healing studies showed a significantly faster closure of the scratch 

wound in Cnn2-/- macrophages versus the wild type control (Figure 15A).  The migration 

velocity of WT and Cnn2-/- foam cells was both significantly hindered as compared to 

that of the genotype-matched macrophages.  However, the migration velocity of WT 

foam cells was hindered significantly more than that of Cnn2-/- foam cells.  As a 

Figure 13. Cnn2-/- macrophages retained the ability of lipid engulfment and formation of 
foam cells. Peritoneal residential macrophages isolated from WT and Cnn2-/- mice were 
cultured on cover slips and incubated with 25 µg/ml acetylated LDL for 4, 8 and 24 hrs. 
Intracellular lipid droplets were stained with Oil Red O. A. Representative low (upper panels) 
and high (lower panels) magnification images at 24 of hrs incubation with LDL. B. Quantitative 
measurements during the incubation with LDL. The results showed that the area and intensity 
of lipid droplets were significantly increased during the course of LDL incubation but no 
significant difference (NS) was detected between WT and Cnn2-/- groups (n=3 mice for each 
group). 
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consequence, Cnn2-/- foam cells moved even faster than that of WT macrophages 

(Figure 15B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Similar levels of calponin 2 expression in residential and elicited mouse 
peritoneal macrophages and effective lipid loading to produce foam cells. SDS-PAGE 
and Western blots using mAb CP1 specifically against calponin 1 and polyclonal antibody 
RAH2 raised against calponin 2 showed similar levels of calponin 2 in residential and elicited 
mouse peritoneal macrophages. Wild type mouse urinary bladder that expresses both 
calponin 1 and calponin 2 was used as a positive control and Cnn2-/- macrophages as a 
negative control. No calponin 1 is detected in residential or elicited mouse peritoneal 
macrophages. B. The images show a WT example for LDL-treatment in culture to effectively 
transform all macrophages into foam cells (Figure 13 showed that there is no difference in 
lipid ingestion between WT and Cnn2-/- macrophages), justifying their use in wound healing 
studies. 
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Figure 15. Faster migration of calponin 2-null macrophages than that of WT 
macrophages, compensating for the impaired migration of foam cells. Scratch wounds 
were made in monolayer cultures of mouse macrophages and foam cells. Healing of the wound 
by cell migration was monitored for 3 hrs. The micrographs (A) and densitometry quantification 
of the wound area (B) showed a faster closure of the wound in the Cnn2-/- macrophage culture 
than that of WT macrophage control. The migration velocity was hindered in both WT and Cnn2-

/- foam cells as compared to that of genotype-matched macrophages, which was, however, 
significantly compensated in Cnn2-/- foam cells. Values are presented as Mean ± SEM. n equal 
to the experimental repeats (the number of wounds studied in each of the Cnn2-/- and WT 
groups). aP<0.05, Cnn2-/- macrophage vs. WT macrophage; bP<0.05, Cnn2-/- macrophage vs. 
Cnn2-/- foam cell; cP<0.05, Cnn2-/- foam cell vs. WT foam cell;  dP<0.05, Cnn2-/- foam cell vs. WT 
macrophage; eP<0.05 WT foam cell vs. WT macrophage. Statistical analysis was performed 
using two-way ANOVA with mean comparison using Tukey test.  
 
Deletion of calponin 2 attenuated the development of atherosclerosis in ApoE-/- 
mice 

Apolipoprotein E (ApoE) is present on the surface of several lipoproteins and 

plays an important role in cholesterol transportation and metabolism.  ApoE deficiency 
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in mice leads to hyperlipidemia and spontaneous atherosclerosis even when fed with a 

normal diet [104].  To focus our study on the effect of calponin 2 deletion on the function 

of macrophages in the pathogenesis of atherosclerosis under a relatively more 

physiological condition, ApoE-/- mice fed on a normal chow diet was used as the 

atherosclerosis model. ApoE-/-; ApoE-/-,Cnn2-/- double KO and ApoE-/-,Cnn2f/f,lysMcre+ 

myeloid-specific Cnn2 KO mice were studied at 6.5 month of age to examine aortic 

atherosclerotic lesions.  A possible gender difference in the development of 

atherosclerosis in ApoE-/- mice has been suggested [105, 106] [107] [108].  Therefore, 

data of both male and female were collected in our study to consider gender-based 

variation.  The aorta en face method was employed and atherosclerotic lesions were 

quantified.  

While no difference was detected in the levels of total serum cholesterol between 

ApoE-/- and ApoE-/-,Cnn2-/- groups (data not shown), the results in Figure 16 showed 

that in male mice, the area of ApoE deficiency-caused atherosclerotic plaques was 

reduced by 56.2% with global deletion of calponin 2 and by 91.9% with myeloid cell-

specific deletion of calponin 2.  In females, ApoE-/-,Cnn2-/- and ApoE-/-,Cnn2f/f,lysMcre+ 

mice also showed significantly reduced plaque areas (51.9% and 50.3% less as 

compared with that in ApoE-/- controls, respectively).  The fact that myeloid cell-specific 

KO of Cnn2 has the same or stronger effect in comparison with that of global KO 

indicates that the therapeutic effect was primarily via the function of myeloid cells.  This 

result is consistent with another finding in our lab that myeloid cell-specific Cnn2 

knockouts have stronger effects on attenuating inflammatory arthritis than that in global 

Cnn2 knockouts [64]. These data indicate that loss of calponin 2 in some other cell 
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types may counteract the effect of calponin 2 deletion in myeloid cells on attenuating 

and resolution of inflammation.  We further examined the atherosclerotic lesions at 

aortic roots of male ApoE-/-,Cnn2f/f,lysMcre+ mice and ApoE-/- controls.  The results in 

Figure 17 showed significantly less total lesion area and macrophage content in ApoE-/-, 

Cnn2f/f,lysMcre+ mice.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 16. Atherosclerotic lesions in aorta en face of 6.5-month-old ApoE-/- ApoE-/-, 
Cnn2-/- and ApoE-/-, Cnn2f/f, lysMcre+ mice fed on standard chow diet. A. Representative Oil 
Red O staining of en face aorta. The results showed that ApoE-/-,Cnn2-/- and ApoE-/-,Cnn2f/f, 
lysMcre+ mice had significantly attenuated atherosclerotic lesions compared to that of the age- 
and sex-matched ApoE-/- mice. B. Lesion quantification of Oil Red O staining of en face aorta. 
*P<0.05, ApoE-/-,Cnn2-/- vs. ApoE-/-; #P<0.05, ApoE-/-,Cnn2f/f,lysMcre+ vs. ApoE-/-; **P<0.01, 
ApoE-/-,Cnn2-/- vs. ApoE-/-; ##P<0.01, ApoE-/-,Cnn2f/f,lysMcre+ vs. ApoE-/-. 
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Figure 17. Atherosclerotic lesions 
in aortic root of 6.5-month-old 
ApoE-/- and ApoE-/-, Cnn2f/f, lysMcre+ 
mice fed on standard chow diet. A. 
Representative images of aortic sinus 
sections. Lesion morphology and lipid 
contents were evaluated with H & E 
and Oil Red O staining. Macrophage 
infiltration was detected via 
immunohistochemical staining for 
macrophage marker CD68. B. 
Quantification analysis of the lipid 
content and macrophage infiltration. 
The results showed that ApoE-/-

,Cnn2f/f,lysMcre+ aortae had 
significantly attenuated athero-
sclerotic lesion and macrophage 
infiltration compared to that of age- 
and sex-matched ApoE-/- mice. 
*P<0.05. 
 

 
 

 

 

 

 

 
It was reported that endogenous estrogen plays an atheroprotective role in 

female mice [109].  However, there are also data indicating that the lesions in ApoE-/- 

mice were severer in females [110] [108].  Our present study showed severer lesion 

development in female ApoE-/- mice and a likely more effective attenuation of 

atherosclerosis by calponin 2 deletion in male mice (Figure 16B).  The significance of 

this observation merits investigation in future studies. 
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Figure 18. Cytokine production in WT and Cnn2-/- macrophages and foam cells. A. Levels 
of representative cytokines in WT and Cnn2-/- macrophages and foam cells. Values are 
presented as mean ± SEM (n=3 mice each for WT and Cnn2-/- groups). *P<0.05, **P<0.01 
(both two-tail t-test), and #P<0.05 (one-tail t-test). B. The heat map summarizes that WT foam 
cells had increases in cytokines associated with monocytosis (M-CSF and IL-3) and 
inflammation (IL-1a and VEGF) as compared with that of untreated WT macrophages. 
Untreated Cnn2-/- macrophages have decreased baseline levels of cytokines associated with 
monocytosis (G-CSF and M-CSF) and inflammation (IL-6, IFN-g and CXCL10) in comparison 
with that of untreated WT macrophages. Cnn2-/- foam cells also had significantly lower levels of 
cytokines associated with monocytosis (Eotaxin, G-CSF, M-CSF and IL-3) and inflammation 
(IL-6, IL-12, IFN-g, CXCL10, CXCL1, TNF-a and VEGF) is comparison with that of WT foam 
cells.	

 

Deletion of calponin 2 alters cytokine productions of macrophages and foam cells 

Cnn2-/- and WT mouse macrophages and in vitro lipid-loaded foam cells were 
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examined for their production of cytokines.  The quantitative data in Figure 18A and  the 

summary heat map in Figure 18B demonstrated that in comparison with untreated WT 

macrophages, WT foam cells increases in cytokines associated with monocytosis (M-

CSF and IL-3) and inflammation (IL-1a and VEGF).  On the other hand, untreated Cnn2-

/- macrophages exhibited decreased baseline levels of cytokines associated with 

monocytosis (G-CSF and M-CSF) and inflammation (IL-6, IFN-g and CXCL10) as 

compared with that of untreated WT macrophages.  In comparison with that of WT foam 

cells, Cnn2-/- foam cells had significantly lower levels of cytokines associated with 

monocytosis (Eotaxin, G-CSF, M-CSF and IL-3) and inflammation (IL-6, IL-12, IFN-g, 

CXCL10, CXCL1, TNF-a and VEGF).  

Deletion of calponin 2 decreases adhesion of macrophages to culture substrate 

It is known that calponin 2 plays a role in enhancing the adhesion of cells to 

Figure 19. Decreased substrate adhesion of Cnn2-/- macrophages. Freshly isolated mouse 
peritoneal residential macrophages were studied for the velocity of substrate adhesion by 
quantification of the adherent cells at a series of time points. A. Normalized to the absorbance of 
the total seeded cells fixed in unwashed wells, the results showed that Cnn2-/- macrophages have 
a decreased substrate adhesion as compared with that of WT macrophages. B. Normalized to the 
maximum adherent cells of each group, the data further demonstrated that Cnn2-/- macrophages 
adhered to the culture substrate slower than that of WT macrophages, reaching the plateau of 
adhesion at 35 min vs. 15 min after seeding. *P<0.05 vs. WT group.	
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culture substrate [ [2].  Substrate adhesion is a critical factor in macrophage 

differentiation and activation [111].  The results in Figure 19 showed that  

the deletion of calponin 2 significantly weakened and slowed adhesion of macrophages 

to the culture substrate, suggesting a possible mechanism for calponin 2 to regulate 

macrophage functions via altering cell adhesion.  

To investigate the mechanism for calponin to regulate cell adhesion, primary skin 

fibroblasts were studied taking advantage of their extended spreading in culture, which 

permits more clear imaging of the cytoskeleton.  Typical actin stress fibers were seen in 

Figure 20. Association of calponin 2 with the actin-myosin cytoskeleton. Primary cultures 
of neonatal mouse skin fibroblasts on coverslips were examined. Confocal fluorescence 
microscopic images showed that calponin 2 co-localizes with tropomyosin-F-actin stress fibers 
(the distribution of tropomyosin detected using mAb CG3 is similar to that of F-actin stress fibers 
and co-localized with calponin 2) and myosin IIA, but not at the focal adhesion sites identified by 
anti-paxillin mAb 5H11 staining. Cell nucleus was stained with DAPI.	
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the cultured neonatal mouse skin fibroblasts (Figure 20).  Immunofluorescence staining 

using anti-calponin 2 mAb 1D11 and rabbit polyclonal antibody RAH2 revealed co-

localizations of calponin 2 with F-actin, tropomyosin and myosin IIA, but not with 

paxillin-stained focal adhesions [112].  The results suggest that calponin 2 enhances 

substrate adhesion of cells possibly by decreasing dynamics of the actin cytoskeleton 

through the inhibition of myosin motor function, which is a fundamental function of 

calponin [52] [53].  

Intracellular distribution of calponin 2 

Figure 21. The actin-myosin cytoskeleton in WT and Cnn2-/- macrophages and foam cells. 
A. Confocal fluorescence microscopic images showed concentrated F-actin in the leading edge 
and the trailing tail of migrating macrophages, while myosin IIA mainly in the center of cell body 
and absent at the trailing tail. The distribution patterns of F-actin and myosin are similar in WT 
vs. Cnn2-/- macrophages and the foam cells. B. The cellular location of calponin 2 was 
investigated in WT macrophages and foam cells with F-actin as a reference. The results showed 
that calponin 2 is concentrated in the center of cell body and absent at the trailing tail, similar to 
that of myosin IIA. Cell nucleus was stained with DAPI.	
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We further examined the effect of calponin 2 deletion on the actin-myosin 

cytoskeleton in WT and Cnn2-/- macrophages and foam cells.  The results in (Figure 21) 

showed that while F-actin is concentrated in the leading edge and the trailing tail of 

migrating macrophages, myosin mainly in the center of cell body.  The distribution 

patterns of F-actin and myosin are similar in WT vs. Cnn2-/- macrophages and the foam 

cells.  The cellular location of calponin 2 in WT macrophages and foam cells is similar to 

that of myosin IIA.  A hypothesis is that calponin 2 enhances substrate adhesion of cells 

by inhibiting myosin motor function and decreasing dynamics of the cytoskeleton, which 

merits further investigation. 

Discussion 

Atherosclerosis is an inflammatory disease and the main cause of coronary heart 

disease and stroke [6].  Macrophages play a central role in the pathophysiology of 

atherosclerosis and the regulation of macrophage function is a promising therapeutic 

target for the disease [113].  In the present study, we investigated the role of calponin 2, 

an actin cytoskeleton-associated regulatory protein, in macrophages in the development 

of arterial atherosclerosis.  The results demonstrated that deletion of calponin 2 

enhances the motility of macrophages, compensates for the hindered motility of foam 

cells (Figure 15), and attenuates the development of ApoE deficiency-caused 

atherosclerosis in vivo (Figures 16 and 17).  These novel findings have several impacts 

on our understanding of calponin regulation of macrophage function in inflammatory 

diseases. 

Deletion of calponin 2 increases the motility of macrophages and compensates 
for the impaired motility of foam cells 

Macrophages and foam cells are pivotal cell types in the development of 
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inflammatory lesion in arterial atherosclerosis, effecting on the progression and 

regression of plaques [114].  Although phagocytosis clearance of lipoproteins by 

macrophages is likely to be beneficial at the outset of this inflammatory response, 

dysregulation of lipid metabolism and accumulation of lipid-ingested macrophages in 

atherosclerotic plaques may alter immune phenotypes and cause apoptosis to 

exaggerate inflammatory response and aggravate the progression of atherosclerosis 

lesion.  Therefore, promotions of cholesterol efflux from macrophages [115] and 

macrophage emigration from plaques [116] have been proposed as therapeutic 

approaches.  

Cholesterol loading in macrophages results in significant reduction of migration 

ability [117] [118], accompanied by decreased capacity of force generation by cell 

locomotors [119].  Lipid-ingested macrophages have hindered migration and the 

retention of macrophages in atherosclerotic lesions contributes to the failure of resolving 

inflammation and plaque development [120] [114].  Reversal of cholesterol loading can 

restore the migration ability of macrophages [118].  Calponin 2 is a regulator of cell 

motility. Calponin binds to F-actin and inhibits the actin-activated MgATPase activity of 

myosin II [49] [50].  This function plays a role in modulating smooth muscle contractility 

and corresponds to the effect of calponin 2 on stabilizing the actin cytoskeleton in non-

muscle cells and inhibiting cell motility [121].  Calponin 2 and myosin II are both 

concentrated in the center of the cell body of macrophages (Figure 21), supporting this 

hypothesis that deletion of calponin 2 removes an inhibition of myosin II motor and 

increases the dynamics of the cytoskeleton.  This mechanism lays a foundation for 

calponin to regulate actin cytoskeleton-based functions, such as cell proliferation, 
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adhesion and migration [27] [2] [33] [34].  

Previous studies have demonstrated that primary fibroblasts and peritoneal 

macrophages isolated from Cnn2-/- mice migrated faster than that of WT control cells 

[60] [1].  Our present study further showed that deletion of calponin 2 increases the 

motility of not only macrophages but also foam cells, overcoming the negative impact of 

lipid loading (Figure 15).  Since Cnn2-/- and WT macrophages have similar amount of 

lipid loading (Figure 13), the less impaired motility of Cnn2-/- foam cells is likely based 

on higher intrinsic cytoskeleton dynamics other than increasing lipid efflux.  This notion 

is supported by the fact that the motility of Cnn2-/- foam cells remained faster than that 

of WT macrophages (Figure 15). 

This finding suggests that calponin 2 is a potential target for controlling the 

motility of macrophages and foam cells to attenuate the progression of atherosclerosis.  

Deleting calponin 2 to increase the motility of macrophages and compensate for the 

hindered motility of foam cells is a mechanism downstream of cellular signaling 

pathways, which may provide a specific treatment for atherosclerosis.  Supporting this 

notion, the development of atherosclerosis in ApoE-/- mice was very effectively 

attenuated by deleting calponin 2 in macrophages (Figures 16 and 17).  

Deletion of calponin 2 in macrophages attenuates the development of 
atherosclerosis with reduced production of inflammatory cytokines 

Cytokine-mediated cell signaling plays dominant roles during the pathogenesis 

and progression of atherosclerosis [122].  As expected, our study found up-regulations 

of pro-inflammatory cytokines M-CSF, IL-3, IL-1a and VEGF were found in WT foam 

cells compared to that in WT macrophages (Figure 18). IL-1a is a prominent pro-

inflammatory cytokine produced by macrophages following ingestion of oxidized LDL 
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[123, 124].  Atherosclerotic lesions in ApoE-/- mice transplanted with IL-1a-/- bone 

marrow cells was 52% less than that in IL-1a+/+ transplanted controls (Kamari et al., 

2011).  Atherosclerosis development is also accompanied by the up-regulation of VEGF 

[125].  VEGF stimulates the proliferation and growth of endothelial cells, induces 

angiogenesis, and potentially promotes plaque formation and destabilization [126].  M-

CSF and IL-3, cytokines that are associated with monocytosis, are induced by 

hypercholesterolemia and cause proliferation of hematopoietic stem cells and progenitor 

cells [127].  

Our study further showed that the deletion of calponin 2 alters cytokine 

production profiles of macrophages and foam cells (Figure 18).  Comparing with WT 

foam cells, Cnn2-/- foam cells have decreased productions of monocytosis associated 

cytokines G-CSF, M-CSF and IL-3 and pro-inflammatory cytokines IL-6, and IFN-g.  The 

decreased production of inflammatory cytokines was also found in Cnn2-/- macrophages 

as compared to that in WT macrophages, indicating a baseline anti-inflammatory 

phenotype that effectively overrides the pro-inflammatory stimulation of lipid ingestion.  

This mechanism provides a molecular basis for the attenuated development of 

atherosclerosis in ApoE-/-,Cnn2-/- and ApoE-/-,Cnn2f/f,lysMcre+ mice (Figures 16 and 17).  

Deletion of calponin 2 decreases cell adhesion as a potential mechanism to 
reduce pro-inflammatory activity of macrophages 

Calponin is an actin filament-associated regulatory protein and its function has 

been most extensively studied for the regulation of smooth muscle contractility (Liu & 

Jin, 2016).  The smooth muscle-specific isoform calponin 1 functions as an inhibitory 

regulator of smooth muscle contraction through inhibiting actomyosin ATPase [21].  

Calponin 2 is the isoform of calponin expressed in macrophages and functions in 
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decreasing the dynamics of actin cytoskeleton and regulating phagocytosis, migration 

and adhesion.  The current knowledge regarding macrophage differentiation and 

functions in inflammatory diseases is mainly from studies of receptor-ligation based 

signaling pathways.  Our present study showed that calponin 2, a cytoskeleton 

regulatory protein, effectively modifies the function of macrophages in the development 

of atherosclerosis, proposing a novel cell motility-based mechanism to attenuate 

inflammatory diseases. 

Differentiation and phenotype polarization of macrophages could promote either 

resolution of inflammatory process and attenuation of atherogenesis [128] [129] or 

acceleration of atherosclerosis [130] [131].  It has been broadly observed that substrate 

adhesion is critical for macrophage differentiation [132] [111].  Macrophages cultured on 

stiffer substrate exhibited increased spreading area and enhanced adhesion, 

accompanied with elevated classical activation than that of macrophages cultured on 

softer substrate [133].  Macrophage grown on soft substrates produced less 

proinflammatory cytokines with decreased TLR4 activity than that of the macrophages 

grown on rigid substrates [134].  The modulation of macrophage function by substrate 

rigidity is dependent on actin polymerization and RhoGTPase activation [19].  

Similar to the findings in other cell types [33, 60, 2], calponin 2 facilitates the 

adhesion of macrophages to the culture substrate (Figure 19).  Calponin 2 is not located 

at the cell focal adhesions but concentrated in the center of the cell body as that of 

myosin II (Figures 20 and 21).  This observation suggests that calponin 2 facilitates and 

stabilizes cell adhesion by inhibiting myosin II motor and reducing the dynamics of 

cytoskeleton.  The deletion of calponin 2 to increase the dynamics of actin cytoskeleton 
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and weaken cell adhesion (Figure 19) could be responsible for the decreased baseline 

production of pro-inflammatory cytokines in Cnn2-/- macrophages and the attenuated 

up-regulation of pro-inflammatory cytokines in Cnn2-/- foam cells (Figure 18). 

Summary 

Our study demonstrated that calponin 2 regulates macrophage function in the 

development of atherosclerosis via modulating the function of actin cytoskeleton.  

Deletion of calponin 2 increases macrophage motility and compensates for the impaired 

motility of foam cells, reduces inflammatory cytokines in macrophages and foam cells, 

and reduces atherosclerosis lesions in ApoE-/- mice.  The data provide evidence that 

changes in myosin motor-based cytoskeleton dynamics and cell adhesion alter 

macrophage activities, implicating a potentially novel therapeutic target for the treatment 

and prevention of atherosclerosis. 
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CHAPTER 4 - MECHANICAL REGULATION OF CYTOSKELETON FUNCTION IN 
BLOOD VESSELS: THE ROLE OF A CALPONIN-RELATED PROTEIN, SM22 

Abstract 

SM22, also named transgelin, encoded by the gene TAGLN is a calponin-related 

protein found in smooth muscle, fibroblast and cancer cells. SM22 was discovered three 

decades ago but its biological function remains unclear. In addition to an application as 

differentiation marker for smooth muscle cells, SM22 has been reported to regulate the 

structure and dynamics of actin cytoskeleton and cell motility in fibroblasts and cancer 

cells. Here we report a novel finding that the expression and degradation of 

SM22/transgelin are both regulated by mechanical tension. Mass spectrometry 

identification detected that SM22 was significantly decreased in mouse aortic rings after 

incubation under low mechanical tension. Using specific monoclonal antibodies 

developed against chicken gizzard SM22, we found high levels of SM22 in human fetal 

lung fibroblast cells line MRC-5 (ATCC CCL-177) and primary neonatal mouse skin 

fibroblasts. Similar to that of calponin 2, the level of SM22 is positively dependent on the 

mechanical tension in the cytoskeleton as determined by the stiffness of the culture 

substrate. Quantitative RT-PCR demonstrated a transcriptional regulation of TAGLN 

gene expression by mechanical tension in the cytoskeleton. The level of SM22 is 

decreased in skin fibroblasts isolated from calponin 2 knockout mice compared to that in 

calponin 2-positive wild type cells, suggesting their correlated functions. With the close 

phylogenetic relationship between TAGLN and the calponin genes, SM22 is identified 

as a calponin-like cytoskeleton regulatory protein. These findings laid a groundwork for 

understanding the physiological function of SM22/transgelin in the mechanoregulation 

of cytoskeleton and cell motility. 
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Introduction  

SM22 is a globular 22-kDa protein with basic isoelectric point originally isolated 

from chicken gizzard smooth muscle [135] [136].It was then found in mammalian 

smooth muscles and has since been considered as a biomarker for smooth muscle 

differentiation [137]. SM22 was rediscovered in 1993 and named transgelin due to its 

apparent ability to induce gelation of actin filament in vitro [138]. Sequence analysis 

showed that SM22 and transgenlin represent the same protein [136] [139]. Subsequent 

studies have further identified a family of related proteins including SM22α/transgelin, 

SM22β, mp20, NP22, NP25, p27, and WS3-10 [140].  

Based on sequencing data for vertebrate genomes, all these proteins are 

encoded by three homologous genes, TAGLN1, 2 and 3, located on chromosomes 11, 

1 and 3, respectively, in the human genome.  SM22α, transgelin and WS3-10 are 

identical proteins encoded by TAGLN1 gene, SM22β is the product of TAGLN2, and 

NP22 and NP25 found in neuronal tissues is the product of TAGLN3.  The proteins 

encoded by TAGLN1 and TAGLN2 have been demonstrated with similar functions as 

actin-binding proteins abundantly expressed in contractile smooth muscle cells [141].  

They are also expressed in fibroblasts with a role in modulating actin-cytoskeleton 

based functions such as shape changing, migration and cell type transformation [142]. 

SM22a has been identified with structural similarities to that of calponin [137]. 

Calponin is known to be a family of actin-filament associated regulatory proteins.  Three 

isoforms of calponin encoded by three homologous genes have been found in 

vertebrate species: A basic calponin (calponin 1, isoelectric point (pI) = 9.4) encoded by 

CNN1 [22], a neutral calponin (calponin 2, pI = 7.5) encoded by CNN2 [23] [24] and an 
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acidic calponin (calponin 3, pI = 5.2) encoded by CNN3 [25].  Extensive research in the 

past two decades has determined that calponin 1 is specifically expressed in mature 

smooth muscle tissue with a role in regulating smooth muscle contractility; calponin 2 is 

expressed developing and remodeling smooth muscle and many non-muscle cell types 

with a role in regulating actin cytoskeleton based functions such as proliferation, 

adhesion migration and phagocytosis; calponin 3 is found in neuronal cells, myoblasts 

and embryonic trophoblasts, where it may function in regulating the actin cytoskeleton 

with a proposed role in the plasticity of neural tissues and embryonic development [34].  

Primary structures of the three calponin isoforms share a conserved N-terminal 

calponin homology (CH) domain and a conserved middle region containing two actin-

binding sites, whereas their C-terminal segments are variable to constitute the main 

differences among the isoforms [34]. SM22a has structural similarities with calponin in 

the CH domain and the first actin-binding site, implicating a function of actin-binding.  It 

has been reported that the expression pattern of SM22a in differentiated smooth muscle 

is similar to that of calponin 1 while its regulation of actin cytoskeleton in fibroblasts is 

similar to that of calponin 2 in non-muscle cells.  

In this chapter, we demonstrate for the first time that the gene expression and 

degradation of SM22a are both regulated by cytoskeleton tension. Maintaining 

mechanical tension protected SM22a from degradation in mouse aorta in vitro. The 

levels of SM22a mRNA and protein in fibroblasts are both positively related to the 

stiffness of the culture substrate, similar to that of calponin 2.  Interestingly, the level of 

SM22a is decreased in skin fibroblasts isolated from calponin 2 knockout (KO) mice 

compared to that in wild type (WT) control cells, indicating their related functions.  
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These findings lay the groundwork for understanding the physiological function of 

SM22/transgelin in mechanoregulation of the cytoskeleton. 

Materials and Methods 

Genetically modified mice 

The generation and initial characterization of Cnn2-floxed (Cnn2f/f) mice and 

induction of systemic Cnn2 KO have been described previously [1].  The alleles have 

been transferred to full C57BL/6 background.  All animal studies were carried out under 

protocols approved by the Institutional Animal Care and Use Committee of Wayne State 

University.  

Examination of smooth muscle protein degradation in response to tissue tension 

Adult mouse aortae were isolated immediately after euthanasia.  One segment of 

the aorta was mounted on a pipet tip and secured with 6-0 suture to apply constant 

tension to the tissue.  Another segment was left slack. Special care was taken to avoid 

stretching or other tissue damages.  The aortic tissues were then incubated in 

phosphate buffered saline (PBS) at 37 °C for 6 hrs.  The tension-applied portion and the 

slack portion were then processed in parallel to prepare SDS-gel samples by high 

speed mechanical homogenization in SDS-gel sample buffer containing 2% SDS and 

heated at 80 °C for 5 min to extract total protein while inactivating endogenous 

proteases.  The samples were examined using SDS-polyacrylamide gel electrophoresis 

(PAGE) and Western blotting as described below. 

SDS-PAGE and Western blotting 

Representative tissues were obtained from 6-month old C57B/L6 mice 

immediately after euthanasia and rapidly frozen at -80 °C.  Total protein was extracted 
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by homogenization in SDS-PAGE sample buffer as above.  Total protein extracts from 

cell cultures were prepared by lysing phosphate-buffered saline (PBS)-washed 

monolayer cells in SDS-PAGE sample buffer and heating at 80 °C for 5 min.  

The protein extracts were analyzed using 14% SDS-gel in a modified Laemmli 

buffer system with an acrylamide:bisacrylamide ratio of 180:1 and at pH 8.8 for stacking 

and resolving gels as well as for the sample buffer.  After electrophoresis, the gels were 

fixed and stained with Coomassie Blue R-250 to assess sample integrity and to 

normalize the protein input.  Duplicated gels were electrically blotted on nitrocellulose 

membrane using a Bio-Rad semi-dry transfer apparatus for Western blot analysis.  The 

membrane was incubated with a mouse anti-SM22a mAb 3F6 (described below) or a 

rabbit antiserum, RAH2, previously raised against mouse calponin 2 [95] in Tris-

buffered saline containing 0.1% bovine serum albumin (BSA).  The calponin and SM22a 

bands recognized by the first antibody were revealed using alkaline phosphatase-

labeled anti-rabbit IgG or anti-mouse IgG second antibody (Santa Cruz Biotechnology) 

and 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium chromogenic substrate 

reaction. 

LC-MS/MS protein identification 

Protein bands of interest were excised from SDS-gel.  The gel slices were 

washed with 50 mM ammonium bicarbonate, reduced in 10 mM DTT at 37°C for 45 min 

and then alkylated with 55 mM iodoacetamide at room temperature for 30 min. 10 ng/µl 

each of Lys-C, trypsin, Glu-C, and chymotrypsin were added to four replicate reaction 

tubes for in gel protein digestion by incubation at 37 °C overnight except for 

chymotrypsin that was incubated at room temperature.  The resulting peptides were 
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separated on a reversed-phase C18 column with a 90 min gradient using a Dionex 

Ultimate HPLC system.  MS and MS/MS spectra were then acquired on an Applied 

Biosystems QSTAR XL mass analyzer using information dependent acquisition mode. 

MS scan was performed from m/z 400-1,500 for 1s followed by product ion scans on 

two most intense multiply charged ions.  Peak lists were identified by submitting to 

Mascot server to search against the NCBInr database for all entries with 

carbamidomethyl (C) used as a fixed modification and oxidation (M), N-acetylation 

(protein N terminus) as variable modifications. 

Cloning of mouse SM22a cDNA and expression in E. coli 

Total RNA was extracted from adult mouse uterus (that is known expressing 

SM22a at a high level) using the TRIzol reagent (Invitrogen) as described the 

manufacture’s protocol.  Integrity of the isolated RNA was verified using agarose gel 

electrophoresis.  cDNA encoding SM22a was obtained by reverse transcription-coupled 

polymerase chain reaction (RT-PCR).  Reverse transcription was carried out using an 

anchored oligo(dT) primer TV20 and avian myeloblastosis virus reverse transcriptase 

(AMVRT) at 42 °C for 2 hrs.  PCR amplification of the coding region of SM22a cDNA 

was carried out using primers synthesized containing unique NdeI and EcoRI restriction 

enzyme cutting sites (Forward primer: 5’-CTCCATATGGCCAACAAGGGTCCA-3’; 

Reverse primer: 5’-CTGGAATTCCCTTTCTAACTGATGAT-3’, NdeI and EcoRI sites 

were indicated as bold italic font in primer sequence) for cloning into the T7 polymerase-

based pAED4 expression plasmid vector [143].  

The cDNA was ligated to NdeI and EcoRI cut pAED4 vector. The recombinant 

plasmids were used to transform JM109 E. coli. Positive plasmids were screened by 



www.manaraa.com

 

	

66	

	

PCR and confirmed by sequencing of the cDNA insert.  Competent BL21(DE3)pLysS E. 

coli cells were transformed with the SM22a expression plasmid.  Freshly transformed 

colonies were used to inoculate LB media containing 100 µg/mL ampicillin and 12.5 

µg/mL chloramphenicol.  The cultures were incubated at 37 °C with vigorous shaking 

and induced at O.D.600nm of ~0.3 by adding IPTG to a final concentration of 0.4 mM.  

The culture were continued for 3 hrs and harvested as previously described [143].  

Mouse SM22a protein expressed in the bacterial culture was purified at 4 °C 

from the French pressed cell lysate with ammonium sulfate fractionation cation 

exchange chromatography using a CM52 column at pH 6, and size exclusion 

chromatography using a G75 column at pH 7.0 as adapted from the method for the 

purification of calponin 1 [144] SM22 protein was traced during the purification and the 

final product was verified using SDS-PAGE and Western blotting as described above. 

Development of anti-SM22 monoclonal antibodies (mAb) 

Chicken gizzard SM22a was purified as described previously [136] and used to 

immunize Balb/c mice.  As described previously [30], spleen cells of a short-term 

immunized mouse were harvested for fusion with Sp2/0-MLK mouse myeloma cells.  

Hybridoma clones were screened by indirect enzyme-linked immunosorbent assay 

(ELISA) against the immunogen, verified by Western blotting against the immunogen, 

and subcloned three or more times to establish stable cell lines.  Anti-SM22a mAbs 

were produced in the forms of hybridoma cultural supernatant and mouse ascites fluids.  

Specificity of the anti-SM22a mAbs was examined using Western blotting against 

various tissue extracts as described above. 

Cell Cultures  



www.manaraa.com

 

	

67	

	

NIH/3T3 mouse fibroblast line (ATCC CRL-1658) was cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS).  Human 

lung fibroblast line MRC-5 (ATCC CCL-171) was cultured in Eagle’s Minimum Essential 

Medium (EMEM) containing 10% FBS.  All culture media used contained 2 mM L-

glutamine, penicillin (100 i.u./mL) and streptomycin (50 i.u./mL).  The cell cultures were 

maintained in a humidified incubator at 37 °C in the presence of 5% CO2. 

Fibroblasts were isolated from the back skin of neonatal WT and Cnn2-/- mice for 

primary cultures as described previously [102].  Briefly, 3-4 days old mice were 

euthanized after PCR genotyping and soaked in 70% ethanol for 2 min before removing 

the skin around torso under sterile condition.  In a 35 mm culture dish, the skin was 

incubated with 0.5% trypsin (9002-07-7 GIBCO) in DMEM at 37 °C for 1 hr.  After 

washing with DMEM, the tissue was minced into fine pieces using a sharp razor for 

digestion in 2 mL of 700 U/mL collagenase I (M3A14008A Worthington) in DMEM at 37 

°C for 2 hrs in a 15 mL centrifuge tube with agitation every 20 min by gentle shaking. 2 

mL ice-cold DMEM containing 20% FBS was then added and the tube was vortex 5 sec 

for 5 times.  The tissue suspension was pipetted up and down several times and the 

isolated cells were passed through a 100 µm nylon mesh.  The cells were collected by 

centrifugation at 150x g for 5 min and re-suspend in 8 mL DMEM containing 20% FBS 

for culture at 37 °C in 5% CO2.  Soon after becoming confluent, the P0 cells from each 

mouse were expanded into four 100 mm dishes to prepare 8-10 vials of frozen stock of 

P1 cells (0.5 to 1 million cells per vial).  Urinary bladder of each mouse was examined 

using Western blot as above to verify the Cnn2-/- and WT genotypes.  The frozen cells 

were stored in liquid nitrogen before being thawed and passed one more time (P2) for 
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experiments. 

Examination of substrate stiffness-dependent expression of SM22a and calponin 2 

A thin layer of polyacrylamide gel was prepared on glass cover slips to provide 

stiffness-tunable matrix for cell culture as described previously [145] [146].  450 μL of 

0.1 M NaOH was smeared on each 22 X 22 mm cover slip and heat with NaOH solution 

at 80°C until the lipid is evaporated.  Thereafter, the cover slips were treated with 3-

aminopropyltrimethoxysilane for 5 min and then with 0.5% glutaraldehyde for 30 min.  

Polyacrylamide gels of different stiffness were polymerized in between the treated cover 

slip at the bottom and a siliconized cover slip on the top.  After polymerization, the 

untreated cover slip was removed to expose the ∼100 μm thin layer of gel to be used as 

cell culture matrix.  

To coat matrix protein for cell culture, the gels were first conjugated with a 

heterobifunctional protein cross-linker sulfo-SANPAH (1 mM buffered with 50 mM 

HEPES, pH 8.5) (Pierce, 22589), by photoactivation at wavelengths of 325 nm.  Then 

0.1 mg/mL Type I collagen (Sigma, C7661) was applied to the gel surface and 

incubated at 37 °C overnight.  Gels were then washed with Minipore water and sterilized 

with UV irradiation for 3 hours.  The gel was soaked in culture media at 37 °C for 1 hour 

before plating cells.  

To examine the effect of the culture substrate stiffness on the expression of 

SM22a and calponin 2, NIH/3T3, MRC5 and primary WT or Cnn2-/- mouse fibroblasts 

were seeded on plastic culture dish or polyacrylamide gels of different stiffness.  The 

cells were harvested after 24 hrs of culture by directly lysis in SDS-gel sample buffer 

after washes with prewarmed D-PBS.  The levels of SM22 and calponin 2 proteins 
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normalized to actin in the cellular protein extracts were examined with Western blot 

analysis using an anti-SM22 mAb 3F6 and an anti-calponin 2 rabbit polycolonal Ab 

RAH2, respectively. 

Quantitative RT-PCR 

Total RNA was extracted from monolayer cell cultures on plastic or gel 

substrates of different stiffness using Trizol reagent (Invitrogen).  Integrity of the isolated 

RNA was verified using agarose gel. One μg of each RNA sample was reverse 

transcribed using an anchored oligo(dT) primer (TV20) and at 42 °C for 2 hrs.  

Quantitative PCR was carried out with Power SYBR Green PCR master mix (Applied 

Biosystems) to determine the level of SM22 cDNA relative to the level of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), using an Applied Biosystems 

7300 real time PCR system (Applied Biosystems, Foster City, CA).  The PCR primers 

(Table 2) of mouse SM22a, calponin 2 and GAPDH quantifications were designed 

crossing exons to avoid background signals from any genomic DNA contamination.  

The quantitative PCR was carried out in 20-μL volumes with 10 min preheating at 95 °C 

followed by 40 cycles of 15 sec at 95 °C and 60 sec at 60 °C.  Melting curve analysis 

was performed at the end to verify that there was no significant formation of primer 

dimmers under the PCR conditions.  The results were analyzed using the 2−ΔΔCt 

method as per the Applied Biosystems user's instructions. 

Data analysis 

DNA and protein sequence analysis was performed using the DNAStar software 

(Lasergene).  2-D densitometry was done to quantify SDS-gel and Western blots on 

images scanned at 600 dpi. Statistical significance for quantitative data was determined 
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using Student’s t test. 

Table 2. Primers used for quantitative PCR.  
Target Gene Forward Primer Reverse Primer 

Mouse SM22 5’-GACATGTTCCAGACTGTTGACCTC-3’ 5’-CCTCTTATGCTCCTGGGCTTTCTT-3’ 

Mouse Calponin 2 5’-AACAGGAGAGGAACTTTGACG-3’ 5’-TCCATGGAGGCAGGATA-3’ 

Mouse GAPDH 5’-TCAACAGCAACTCCCACTCTTCCA-3’ 5’-ACCCTGTTGCTGTAGCCTATTCA-3’ 

The forward primer of mouse SM22 is located in exon 3 and the reverse primer is across exon 4 and 
exon 5. The forward primer of mouse calponin 2 is located in exon 4 and the reverse primer in exon 5. 
The forward primer of mouse GAPDH is located in exon 6 and the reverse primer in exon 7. 

Results 

Development of specific anti-SM22a mAbs 

Three anti-SM22a mAbs, 3F6, 2G4 and 3B9, were developed.  Together with our 

successfully cloned and bacterially expressed mouse SM22a, the specificity of the anti-

SM22a mAbs is shown in Figure 22.  It is of interest to note that 3F6 demonstrates the 

equally high affinity and specificity against purified mouse SM22a and SM22a in 

 
 
Figure 22. The specificity of SM22a mAbs. mAbs 
3F6, 2G4 and 3B9 were screened by 
immunoblotting against purified mouse SM22a and 
smooth muscles from avian and mammalians. 3F6 
demonstrates the equally high affinities against 
purified mouse SM22a and SM22a in smooth 
muscles of avian and mammalian species. 2G4 and 
3B9 have stronger affinity against chicken SM22a 
than SM22a of mouse and dog. 
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smooth muscles from different species, whereas 2G4 and 3B9 have particularly strong 

affinity against chicken gizzard SM22a (the immunogen) but weak reactions against 

SM22a from other species. Thus mAb 3F6 that recognizes SM22a in both avian and 

mammalian species was used in the present study as a tool to quantitatively assess the 

expression of SM22a. 

Reduced mechanical tension causes a degradation of SM22 in mouse 

aortic rings Protein profiles of the aortic rings after 6 hrs incubation at 37 °C in the 

presence or absence of external mechanical load were examined using SDS-PAGE 

(Figure 23).  The results showed that as normalized to actin, almost all proteins were 

preserved at same degrees in the loaded and unloaded portions of mouse aorta after 6 

Figure 23. Mechanical load prevented the degradation of SM22a in mouse aortic rings. 
(A) A portion of the aorta was applied with a mechanical load by the insertion of a pipet tip. The 
other portion of the aorta was left slack. (B) After incubation in PBS at 37 °C for 6 hrs, total 
protein was extracted respectively from the loaded and unloaded portions of the aorta and 
examined using SDS-PAGE. A visible load-protected protein band was identified by mass 
spectrometry to be SM22a, that was confirmed with the mAb 3F6 Western blot. (C) 
Densitometry quantification of mAb 3F6 Western blots normalized to the actin band in the 
Coomassie blue-stained SDS-gel and untreated samples showed an effective prevention of 
SM22a degradation in the tension-loaded aortic ring (*P<0.05). The results are summarized 
from three individual experiments.  
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hrs incubation at 37°C except for a specific protein band that was preserved significantly 

better in the loaded tissue sample.  This band was isolated from the SDS-gel of the 

loaded aortic tissue lane and mass spectrometry identified it to be SM22a,  which was 

confirmed with Western blotting using SM22a -specific mAb 3F6 (Figure 23B). 

Expression of SM22a, calponin 1 and calponin 2 in representative mouse tissues 

Total protein extracts from representative organs and tissues of adult mice were 

analyzed by Western blotting using anti-SM22a mAb 3F6, an anti-calponin 1 mAb CP1 

[26] and anti-calponin 2 polyclonal antibody RAH2 [95]. Actin was used as an internal 

control for the sample loading.  The blots showed that SM22a and calponin 1 are 

Figure 24. Tissue expression profiles of SM22a, calponin 1 and calponin 2. Total 
protein extracts from representative organs and tissues of adult mice were analyzed with 
SDS-gel and Western blots using anti-SM22a mAb 3F6, anti-calponin1 mAb CP1 and anti-
calponin 2 polyclonal Ab RAH2, with slight cross reaction to calponin 1. Purified mouse 
SM22a, calponin 1 and calponin 2 were used as a controls. The sample loading was 
normalized to the level of actin. The Western blots detected SM22a and calponin 1 in all the 
types of smooth muscle organs, while calponin 2 in smooth muscle and in multiple non-
muscle tissues 
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present at significant levels in mature smooth muscle tissues, while calponin 2 is seen 

in smooth muscle as well as multiple non-muscle tissues (Figure 24).  

The levels of SM22a and calponin 2 in fibroblast cell lines and neonatal mouse 
fibroblasts are regulated by the stiffness of culture substrate 

 A novel finding in our study is that the expression level of SM22a in non-muscle 

cells is positively regulated by the stiffness of culture substrate (Figures 25 and 26). The 

cell images in Figure 25A and 26A showed that human fetal lung fibroblast MRC5 and 

mouse fibroblast 3T3 cell lines and neonatal mouse primary skin fibroblasts cultured on 

polyacrylamide gels of lower stiffness produced lower tension in the cytoskeleton as 

reflected by the smaller spreading area, whereas cells cultured on stiffer substrates had 

higher tension and larger spreading area. Moreover, calponin 2-null mouse fibroblasts 

produced smaller spreading area reflecting weaker adhesion in comparison with that of 

WT fibroblasts cultured on the stiffness-matched polyacrylamide gel (Figure 26A). The 

Figure 25. Substrate stiffness-upregulated the level of SM22 and calponin 2 in 3T3 and 
MRC5 cell lines. (A) Microscopic images of mouse fibroblast cell line 3T3 and human fetal 
lung fibroblast cell line MRC5 cultured on gel substrate of various stiffness showed that soft 
gels of low stiffness rendered low tension in the cytoskeleton as reflected by the small cell 
spreading area, whereas stiff substrates produce higher cytoskeleton tension and large cell 
spreading area. (B) With protein inputs normalized to the actin band, SDS-PAGE and Western 
blots showed that the levels of SM22 and calponin 2 in 3T3 and MRC5 were positively related 
to the stiffness of culture substrate. 
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Western blots in Figure 25B demonstrate that the expression of calponin 2 in MRC5 and 

NIH/3T3 fibroblasts is positively related to the stiffness of culture substrate and 

cytoskeleton tension. The same trend was observed in the expression of SM22a in 

MRC5 cells. No expression of SM22a was detected in NIH/3T3 cells.  

 It is of interest to note that the mechanical tension sensing range for the 

expression of calponin 2 is between 1 kPa and 32 kPa, and the sensing was saturated 

in higher stiffness in both MRC5 and NIH/3T3, whereas the stiffness-sensing range for 

SM22a is higher than that for calponin 2: The expression of SM22a in MRC5 cells 

remains non-detectable at 1 kPa and 32 kPa, but increased in the higher stiffness (75 

kPa) of the culture substrates. The Western blots in Figure 26B exhibit that the 

expression of SM22a in primary fibroblasts isolated from WT and Cnn2-/- neonatal 

Figure 26. Substrate stiffness-upregulated the level of SM22a in WT and Cnn2-/- 
fibroblasts. (A) Microscopic images of neonatal mouse skin fibroblasts cultured on gel 
substrate of various stiffness showed that soft gels of low stiffness rendered low tension in the 
cytoskeleton as reflected by the small cell spreading area, whereas stiff substrates produce 
higher cytoskeleton tension and large cell spreading area. As previously observed [1] [2], 
calponin 2-null fibroblasts exhibited smaller spreading area and weaker adhesion in 
comparison with that of WT fibroblasts cultured on the stiffness-matched polyacrylamide gel. 
(B) With protein inputs normalized to the actin band, SDS-PAGE and Western blots showed 
that the levels of SM22a in mouse skin fibroblasts were positively related to the stiffness of 
culture substrate. Calponin 2-null fibroblasts exhibited decreased expression of SM22a, 
especially in cells cultured on low stiffness gel substrates.  
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mouse is also positively related to the stiffness of culture substrate that builds the 

tension in the cytoskeleton. Interestingly, calponin 2-null fibroblasts showed overall 

decreases in the level of SM22a, especially in cultures on low stiffness substrates 

(Figure 26B).  

Cytoskeleton tension regulates SM22a expression at transcriptional level 

Our previous Northern blotting [30] and promoter analysis [32] demonstrated that 

the expression of calponin 2 gene is regulated by the stiffness of culture substrate at the 

Figure 27. Quantitative RT-PCR examination of SM22a expression at transcriptional level. 
qPCR was carried out with Power SYBR Green PCR master mix to determine the level of SM22a 
cDNA relative to the level of GAPDH. The fold changes of gene expression are normalized to the 
that of calponin 2-null fibroblasts cultured on gel substrate of 8 kPa stiffness. The results show that 
the levels of SM22a cDNA expression in mouse skin fibroblasts were positively related to the 
stiffness of culture substrate. Calponin 2-null fibroblasts exhibited overall decreased gene 
expression of SM22a, especially in cells cultured on low stiffness gel substrates. The results 
further indicated an increase in the dependence SM22a gene expression on substrate stiffness in 
calponin 2 KO cells. **P<0.01, WT 75kPa vs. WT 8 kPa; *P<0.05, WT Plastic vs. WT 75 kPa; # 
P<0.05, KO 75kPa vs. KO 8 kPa; ##P<0.01, KO Plastic vs. KO 75 kPa; && P<0.01, KO 8 kPa vs. 
WT 8 kPa; §§ P<0.01, KO 75 kPa vs. WT 75 kPa; ^^P<0.01, KO Plastic vs. WT Plastic. 
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transcriptional level.  The results of our present study further demonstrated with 

quantitative RT-PCR that the expression of SM22a is regulated by the cytoskeleton 

tension produced by the stiffness of culture substrate.  The qPCR data in Figure 27 

show that the mRNA level of SM22a is up-regulated as the stiffness of culture substrate 

increased.  Consistent with the protein expression level in Figure 26, Calponin 2-null 

fibroblasts exhibited decreased gene expression of SM22a, especially in cells cultured 

on low stiffness gel substrates. The expression of SM22a mRNA reached a plateau in 

wild type neonatal mouse skin fibroblasts on 75-kPa substrate, but did not in Cnn2-/- 

cells as compared with that in control cells cultured on the near rigid plastic substrate 

(Figure 27). This observation indicates that the deletion of calponin 2 resulted in an 

increase in the dependence SM22a gene expression on substrate stiffness. 

 
Similarity of primary structures of SM22a and calponin isoforms 

It has been previously noticed that SM22a has a sequence similarity to that of 

calponin [137].  To further assess their evolutionary homology and lineage, DotPlot 

pairwise alignment with amino acid sequences of mouse SM22a and mouse calponin 1 

using MegAlign program (Lasergene; DNASTAR, lnc, Madison, WI) showed that SM22a 

has significant sequence similarity to that of the N-terminal and middle regions of 

calponin 1 which is conserved regions in all three calponin isoforms.  The result further 

showed that the greatest similarity between SM22a and calponin 1 is in the segment of 

amino acids 75 to 150 of both proteins, which corresponds to the CH domain and the 

first actin binding site in calponin 1 (Figure 28A). 

The phylogenetic tree of SM22a and calponin isoforms of representative avian 
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and mammalian species constructed from amino acid sequences with J Hein method 

using the MegAlign computer program (Figure 28B upper panel) showed a clear 

evolutionary relation between SM22a and calponin.  Considering SM22a’s sequence 

similarity matches to the N-terminal and middle regions of calponin 1 (Figure 28A), we 

also constructed a phylogenetic tree after removing the C-terminal variable region of the 

three calponin isoforms (Figure 28B lower panel).  The results show that the 

evolutionary diversity between SM22a and calponins with C-terminal deletion became 

significantly less as compared with that between SM22a and intact calponin isoforms 

Figure 28. Sequence similarity and evolutionary lineage between SM22a and calponin 
isoforms. (A) DotPlot pairwise alignment of the amino acid sequences of mouse SM22a and 
mouse calponin 1. The diagonal lines indicate regions of sequence similarities with the color 
codes indicating degree of matching as specified in the software parameters. Dark blue 
indicates lower similarities, with progressively higher similarities indicated by pale blue, 
green, yellow, orange and red. The results show that the highest similarity between SM22a 
and calponin 1 is present in the region of amino acid 75 to 150 in both proteins, which 
attributes to the CH domain and the first actin binding site in calponin 1. (B) Upper panel: 
Phylogenetic tree of SM22a and calponin isoforms. The results showed a clear evolutionary 
relationship between SM22a and calponin. Lower panel: Phylogenetic tree of SM22a and 
calponin isoforms with their C-terminal variable region removed (CD). Removal of the C-
terminal variable region of calponin significantly decreased the structural diversity between 
SM22a and calponin as well as that among the three calponin isoforms. (See Appendix C for 
NCBI database for sequence analyzed) 



www.manaraa.com

 

	

78	

	

(Figure 28B upper panel).  The C-terminal segment of calponin is a variable region that 

constitutes the main diversity among calponin isoform [34]. This established feature is 

consistent with our phylogenetic analysis results showing that the structural diversity 

among the three calponin isoforms was also significantly decreased by removing the C-

terminal variable region (Figure 28B).  Therefore, the results demonstrate that SM22a is 

a protein closely related to the core structure of calponin, which is conserved among the 

calponin isoforms.  

Discussions 

SM22a was discovered three decades ago but its biological function remains 

unclear.  In addition to possible roles in smooth muscle contraction, it has been 

proposed with functions in regulating the structure and dynamics of actin cytoskeleton 

and cell motility in fibroblasts.  Down-regulation of SM22a has been correlated to cell 

type transformation and tumorigenesis.  In the present study, we report for the first time 

that the expression and degradation of SM22a is regulated by mechanical tension.  

SM22a has a high degree of structural similarity and potentially close evolutionary 

homology to calponin that is known to be regulated and function in the 

mechanoregulation of the cytoskeleton.  Therefore, SM22a may be a member of the 

calponin family of proteins and involved in the regulation of contractile actin filaments 

and non-contractile actin cytoskeleton.  By comprehensively investigating its tissue 

distribution and regulation by mechanical tension, our present study provides novel data 

with the following significances. 

SM22a is expressed at significant levels in smooth muscle and some non-muscle 
cells in culture 

SM22a is known to be abundantly expressed in adult smooth muscles and has 
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been applied as a biomarker of differentiated smooth muscle cells [137].  However, 

SM22a has also been detected in primary fibroblasts and some tumor cell lines.  Our 

broad tissue survey and analysis of several non-muscle cell lines in culture using a 

highly specific mAb developed against SM22a (Figure 24, 25 and 26) clearly showed 

that the expression of SM22a is not exclusively specific to smooth muscle cells.  

Therefore, the use of SM22a as a biomarker for smooth muscle cells or the application 

of SM22a promoter-driven Cre transgene allele in inducing smooth muscle-specific 

gene targeting requires more careful consideration and some clear precautions. 

On the other hand, the high levels of SM22a expressed in differentiated smooth 

muscle cells is together with calponin 1 [141] that is a more specific marker for mature 

and contractile smooth muscle cells [27]  Based on numerus studies from multiple 

laboratories, no calponin 1 expression has been reported in any non-smooth muscle cell 

types, or dedifferentiated smooth muscle cells in culture.  The highly specific expression 

of calponin 1 in smooth muscle cells demonstrates its value as a more specific 

biomarker for differentiated smooth muscle cells and the use of the Cnn1 gene promoter 

[22] to drive smooth muscle specific gene delivery and Cre recombinase expression.  

Mechanoregulation of SM22 protein degradation and gene transcription 

In the present study, we report for the first time that the expression and 

degradation of SM22a is regulated by cytoskeleton tension.  Shown in Figure 23, we 

first detected an effective preservation of SM22a protein in mouse aortic rings by simply 

maintaining a load of mechanical tension whereas a significant decrease of SM22a 

occurred in the unloaded control after 6 hrs of incubation at 37 °C.  This rapid 

degradation indicated a role of cytoskeleton tension dependent stability of SM22a.  
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Previous studies observed that three-day organ culture of rat portal vein in the 

absence of distension caused lower SM22a synthesis compared with culture under a 

mechanical load [147] [148].  To test the effect of cytoskeleton tension on the 

expression of SM22a in non-muscle cells, we demonstrated that the stiffness of culture 

substrate positively regulates the expression SM22a in primary neonatal mouse skin 

fibroblasts and representative fibroblast cell lines (Figures 25 and 26).  

The results from quantitative RT-PCR on RNA extracted from mouse primary 

fibroblasts cultured on high and low stiffness substrates further showed that the levels of 

SM22a mRNA are also positively responsive to the stiffness of culture substrate (Figure 

27).  Altogether, the results demonstrate that similar to that of calponin 2 regulation, the 

gene expression and protein degradation of SM22a are both regulated by mechanical 

tension in the cytoskeleton. 

Interrelated regulation and function of SM22a and calponin 2 in fibroblasts 

SM22a [149] and calponin are both actin-binding proteins.  An interesting result 

of our study is that the level of SM22a in fibroblasts is related to the presence or 

absence of calponin 2 (Figure 26).  SM22a is decreased in Cnn2-/- fibroblasts as 

compared with that in WT fibroblasts expressing significant amounts of calponin 2.  

Whereas the significance of the interdependent expressions of SM22a and calponin 2 

remains to be investigated, previous studies have reported in smooth muscle cells, 

SM22a and calponin 1 undergo different mechanisms in modulating actin filaments.  

Upon PKC phosphorylation, calponin 1-decorated actin stress fibers remain stable in 

the center of cells, while SM22a-decorated actin fibers undergo rapid reorganization 

into podosomes [137].  This observation suggests that calponin 1 is more specifically 



www.manaraa.com

 

	

81	

	

associated with contractile actin filaments than SM22a, whereas SM22a may function in 

the non-contractile actin cytoskeleton that is known to be regulated by calponin 2. 

Previous studies in our lab have demonstrated in multiple cell types that 

cytoskeleton tension regulates both expression and degradation of calponin 2 [29] [30]. 

The promoter of Cnn2 gene contains a low tension-activated suppressor element that is 

responsible for the regulation of calponin 2 gene expression by tension built in the 

cytoskeleton [32].  The mechanoregulation of calponin 2 in cells and stabilization of 

actin cytoskeleton by calponin 2 suggest that calponin 2 may play dual functions in 

mediating cell sensing of external forces as well as cellular responses to maintain a 

physiological equilibrium between cytoskeleton tension and the mechanical 

environment.  Our new finding of the interrelated regulation of SM22a and calponin 2 in 

responses to cytoskeleton tension suggests a crosstalk between these two actin 

filament-associated proteins, which is worth further investigating.  

Consideration of SM22a as a prototype member of the calponin family 

Our present study demonstrated that the protein degradation and gene 

expression of SM22a is regulated by mechanical tension in the cytoskeleton, 

suggesting that is may have calponin 2-like regulation and function.  This notion is 

strongly supported by the fact that SM22a, and calponin have similar structures, 

especially in the regions conserved among the three calponin isoforms (Figure 28).  

Although the mechanoregulations of SM22a and calponin appear not completely 

parallel and they may modulate different cellular structure and functions, the excellent 

alignment of SM22a sequence with the conserved N-terminal and middle regions of 

calponin suggest not only their common ancestry but also a possibility that SM22a 
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represents a “mini-calponin” that lacks only the isoform-specific, possibly evolutionarily 

added, C-terminal variable domain.  This structural difference between SM22a and 

calponin may allow them to provide specific as well as complementary functions.  As a 

mini-calponin, SM22a may represent a prototype member of the calponin family and the 

absence of the diversity-driven C-terminal variable region may provide an informative 

experimental system to understand the fundamental core functions as well as the 

structure-function relationships of calponin and the three isoforms.  
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CHAPTER 5 - PHYSIOLOGICAL CONTRACTILITY OF CARDIOMYOCYTES IN THE 
WALL OF MOUSE AND RAT AZYGOS VEIN 

(This chapter contains previously published material. See Appendix D) 

Abstract 

We previously demonstrated the abundant presence of cardiomyocytes in the 

wall of thoracic veins of adult mouse and rat.  The highly differentiated morphology and 

myofilament protein contents of the venous cardiomyocytes suggested contractile 

functions.  Here we further investigated the contractility of mouse and rat azygos 

venous rings in comparison with that of atrial strips and ventricular papillary muscle. X-

gal staining of transgenic mouse vessels expressing lacZ under a cloned cardiac 

troponin T promoter demonstrated that the venous cardiomyocytes are discontinuous 

from atrial myocardium and aligned in the wall of thoracic veins perpendicular to the 

vessel axis.  Histology study displayed sarcomeric striations in the venous 

cardiomyocytes, which indicate an encirclement orientation of myofibrils in the vessel 

wall.  Mechanical studies found that the rings of mouse and rat azygos vein produce 

strong cardiac type twitch contractions when stimulated with electrical pacing in contrast 

to the weak and slow smooth muscle contractions induced using 90 mM KCl.  The 

twitch contraction and relaxation of mouse azygos veins further exhibited cardiac type of 

b-adrenergic responses.  Quantitative comparison showed that the contractions of 

venous cardiomyocytes are slightly slower than that of atrium muscle but significantly 

faster than that of ventricular papillary muscle.  These novel findings indicate that the 

cardiomyocytes abundant in the wall of rodent thoracic veins possess fully differentiated 

cardiac muscle phenotype despite their anatomical and functional segregations from the 

heart. 
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Introduction 

Cardiomyocytes in adult hearts are post-mitotic cells and cannot be recalled into 

cell cycle [150-153].  Therefore mammalian heart is considered as terminally 

differentiated organ without self-renewal potential [154].  A general consensus is that 

the proper differentiation of cardiomyocytes from progenitor cells requires a specific 

tissue environment, physiological activity, and mechanical load [155-158].  

Understanding the requirements for cardiomyocyte differentiation is of major medical 

importance in exploring myocardial regeneration for the treatment of ischemic heart 

disease and other terminal heart failures resulting from losses of cardiomyocytes and 

cardiac muscle. 

Twitch-like contractions of thoracic venous vessels have been observed in 

mammalian species for two centuries, occurring independently of and asynchronously 

to the heart beats.  Later it was demonstrated these contractions are attributed to the 

presence of striated muscle in the venous wall [159, 160].  Recent publications 

described more observations in large mammals, including humans, that the atrial 

myocardium extends into the vena cavae and pulmonary veins to form short ‘sleeves’ 

[161], which is considered as a possible source of atrial fibrillation [162-165].  Different 

in small rodents, myocardium-like tissue was also found as far as in distal regions of 

extra- and intra-pulmonary veins [166, 167].  However, the physiological feature and 

function of the venous cardiomyocytes remain to be established. 

We recently examined the tissue distribution, ultrastructural features, expression 

and developmental regulation of myofilament protein isoforms of rodent thoracic venous 

cardiomyocytes [166].  The results showed that the venous cardiomyocytes are present 
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in clusters discontinuous and located far from the atrial muscle mass.  They exhibit 

highly differentiated ultrastructure of cardiac muscle characterized by mature sarcomere 

structures and intercellular connection by intercalated discs.  Cardiac-specific isoforms 

of myofilament proteins are expressed in venous cardiomyocytes and the expression 

patterns of troponin I (TnI) and troponin T (TnT) isoforms are synchronized with that in 

the heart during postnatal development.  

The apparently fully differentiated morphology and myofilament protein contents 

of the cardiomyocytes in rodent thoracic veins suggested contractile functions.  In the 

present study, we further investigated the contractility of mouse and rat azygos venous 

rings.  X-gal staining of transgenic mouse vessels expressing lacZ under a cloned 

cardiac TnT promoter demonstrated that the venous cardiomyocytes are aligned in the 

wall of thoracic veins perpendicular to the vessel axis.  Histology study showed 

sarcomeric striations in the venous cardiomyocytes, which indicate encirclement 

orientation of myofibrils in the vessel wall.  Selective measurements of cardiac and 

smooth muscle contractions found that the rings of rat azygos veins produce strong 

cardiac type twitch contractions when stimulated with electrical pacing in contrast to the 

weak and slow smooth muscle contractions induced using 90 mM KCl.  Stimulation with 

isoproterenol ex vivo and in vivo demonstrated cardiac-type b-adrenergic responses of 

the venous cardiomyocytes.  Quantitative comparison showed that the twitch 

contractions of venous cardiomyocytes are slightly slower than that of atrium muscle but 

significantly faster than that of ventricular papillary muscle.  These novel findings 

indicate that the cardiomyocytes in the wall of rodent thoracic veins possess fully 

differentiated cardiac muscle phenotype in terms of physiological contractility despite 



www.manaraa.com

 

	

86	

	

their anatomical and functional segregations from the heart.  

Materials and Methods 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee and were conducted in accordance with the Guiding Principles in the Care 

and Use of Animals, as approved by the Council of the American Physiological Society.  

X-gal staining of transgenic mouse tissues 

An in situ perfusion protocol was used as described previously [166].  Two- to 3-

month-old cTnT-LacZ transgenic mice [168] were heparinized for 30 min and 

anesthetized with intraperitoneal injection of pentobarbital (100 mg·kg-1).  After opening 

the thorax cavity, the left ventricle were cannulated to perfuse the circulatory system 

with filtered Krebs-Henseleit solution (118 mM NaCl, 25 mM NaHCO3, 4.7 mM KCl, 12 

mM KH2PO4, 2.25 mM MgSO4, 2.25 mM CaCl2, 0.32 mM EGTA, 15 mM D-glucose, 2 

mM sodium pyruvate, oxygenated with 5%CO2 and 95% O2 at 37°C, pH7.4) using a 

peristaltic pump (Bio-Rad, Hercules, CA) at a flow rate of 4 mL·min-1.  Blood was 

flushed out from incisions made in the lung. Perfusion pre-fixation was followed using 

filtered 3.7% formaldehyde in Phosphate-buffered saline (PBS) until the visceral tissues 

hardened.  Krebs-Henseleit solution was briefly perfused to remove excess fixative 

before perfusion with X-gal substrate solution (0.1% 5-bromo-4-chloro-indolyl-

galactopyranoside, 5 mM potassium ferrocyanide, 0.02% IGEPAL (Sigma-Aldrich, St. 

Louis, MO, USA), 0.01% sodium deoxycholate in PBS) at 37°C.  Color development 

was monitored, and when necessary, permitted to progress further by dissecting out the 

heart/lung-aorta/azygos vein tissue block and incubating with gentle agitation in X-gal 

substrate solution at 37°C.  After three 5 min rinses in PBS at room temperature, the 



www.manaraa.com

 

	

87	

	

tissue block was post-fixed in 3.7% formaldehyde at 4°C overnight.  Whole-mount tissue 

samples were imaged under a dissection scope and photographed. 

Hematoxylin and Eosin Staining 

Systemic in situ perfusion fixation of adult wild-type mice was performed for 1 

hour as described above.  A tissue block containing aorta and azygos vein was 

dissected out and further fixed in 3.7% formaldehyde overnight to obtain better 

preservation of the venous structure.  After dehydration in 30% sucrose for 48 hours, 

the tissue block was embedded in optimum cooling temperature (O.C.T.) compound 

and rapidly frozen in liquid nitrogen for cryo-sectioning.  Cross-sections of 10 µm 

thickness were cut using a Leica CM 1950 cryostat.  The sections were stained with 

hematoxylin and eosin [169], examined using a Zeiss Axiovert 100 microscope, and 

photographed.  

SDS-polyacrylamide gel electrophoresis (PAGE) and Western blotting 

Adult mouse azygos vein and heart tissues were collected immediately 

postmortem and processed for SDS-PAGE or frozen at -80°C until use.  Using a high-

speed mechanical homogenizer, the tissues were rapidly homogenized in Laemmli 

SDS-PAGE sample buffer containing 2% SDS to prevent enzymatic degradation of 

proteins, heated at 80°C for 5min, and clarified by centrifugation in a microcentrifuge at 

top speed for 5 min.  The protein extracts were resolved on 14% Laemmli gel with an 

acrylamide:bisacrylamide ratio of 180:1.  Atrial and ventricular proteins were loaded at 

40 µg/ well, vessel rings all dissolved in 25 µl SDS sample buffer and 3 µl loaded.  

Loading volume of every sample was later adjusted by densitometry measurement of 

actin.  The gels were stained with Coomassie Brilliant Blue R250 to reveal the protein 
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bands.  Duplicate gels were electrically blotted to nitrocellulose membranes using a 

semidry transfer apparatus (Bio-Rad, Hercules, CA).  

After blocking in Tris-buffered saline (TBS) containing 1% bovine serum albumin 

(BSA), the membranes were incubated with monoclonal antibodies (mAbs) CG1 (from 

University of Iowa, 1:2000 dilution) against smooth-muscle α-tropomyosin, CGb6 (from 

University of Iowa, 1:4000 dilution) against smooth-muscle β-tropomyosin, CT3 (1:4000 

dilution) against cardiac TnT and TnI-1 (1:1000 dilution) against cardiac TnI at 4°C 

overnight [170, 171].  After high stringency washes in TBS containing 0.5% Triton X-100 

and 0.05% SDS, the membranes were incubated with alkaline phosphatase-conjugated 

anti-mouse IgG second antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) at 

room temperature for 1 hr, washed again and developed in 5-bromo-4-chloro-3-

indolylphosphate/nitro blue tetrazolium substrate solution to visualize the protein bands 

recognized by the mAbs.  

Phosphoprotein staining 

To examine protein phosphorylation, SDS-PAGE gels were stained using Pro-Q 

Diamond reagents (Invitrogen) following the manufacturer’s instruction.  Phosphoprotein 

markers (PeppermintStickTM, Invitrogen) were used as control.  Florescence imaging 

was performed using a Typhoon 9210 scanner (GE Healthcare) with excitation at 532 

nm and recording of emission at 580 nm to detect and quantify the phosphoprotein 

bands.  

In vivo treatment with isoproterenol was carried out in adult mice to maximize 

protein kinase A-catalyzed phosphorylation of cardiac myofilament proteins [172].  

Intraperitoneal injection of isoproterenol (0.2 mg·kg-1) was applied under light 
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anesthesia using isoflurane while the heart rate was monitored via surface EKG. As 

soon as the increase in heart rate reached a plateau, the mouse was euthanize and the 

heart and thoracic veins were isolated immediately and rapidly processed into SDS-

PAGE samples as above to minimize the effect of endogenous phosphatases. 

Tissue preparation for contractility measurements 

C57BL/6 mice and Sprague Dawley rats were used in this study.  Thirty minutes 

after intraperitoneal injection of 100 units (mice) or 300 units (rats) of heparin, the 

animal was anesthetized with intraperitoneal injection of pentobarbital sodium (100 

mg·kg-1 body weight).  The heart and azygos vein were rapidly isolated and placed in 

Krebs-Henseleit buffer continuously gassed with 95% O2 and 5% CO2 at room 

temperature.  

Atrial muscle strips from mice were prepared by clamping the top and tying up 

the bottom of the left atrium with 6-0 sutures for mounting to force measurement 

apparatus. 

The anterior papillary muscle of the left ventricle from mice was prepared by 

dissecting together with the tendon at one end and a small portion of the ventricular wall 

tissue at the other end [173].  Both the tendon and ventricular-wall ends were tied with 

6-0 sutures for mounting to force measurement apparatus. 

Azygos vein was trimmed to remove connective tissues and cut into 1 mm rings 

for mounting to force measurement apparatus using steel wire hooks.  Special care was 

taken to avoid stretch or tissue damage.  Rings from the proximal and distal portions of 

4-week rat azygos vein were used for comparison of smooth muscle and cardiac-like 

contractility patterns.  Rings from the proximal portion of mouse azygos vein were used 
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for contractility measurement in comparison with mouse atrial strips and ventricular 

papillary muscles.  3-week old mice were chosen for comparison of contractility pattern, 

for the advantage of more effective superfusion than adult thicker tissue.  We have 

previously shown that the expression of cardiac muscle proteins in venous 

cardiomyocytes is synchronized with that in the atrial and ventricular muscles during 

development [166], justifying the use of tissues from young mice at the same age for 

contractility comparisons.  However, adult mice were preferred in ex vivo isoproterenol 

treatment, in consideration of the mature development of b receptors. 

Selective measurements of cardiac muscle and smooth muscle contractions 

Ring of rat azygos vein was mounted in a thermostatically controlled chamber 

with continuous perfusion of oxygenated Krebs-Henseleit buffer at 3 mL·min-1.  The 

tissues were allowed to equilibrate for 20 min with electrical pulse stimulations at 0.1 Hz.  

The assays were carried out at 27°C. Isometric contractile force was measured using 

Aurora Scientific force transducer Model 403A and recorded using Chart 5 software 

(ASI, Aurora Scientific). 

Rings from proximal and distal portions of rat azygos vein were electrically paced 

at 0.1 Hz in physiological Kreb’s solution to induce cardiac muscle contractions.  The 

buffer was then switched to a modified Kreb’s buffer containing 90 mM KCl [174, 175] 

for 2 min to generate smooth muscle contraction while the cardiomyocytes were 

paralyzed despite continuing electrical pacing at 0.1 Hz.  Perfusion was then returned to 

normal Kreb’s buffer and the recovery of electrically stimulated cardiac muscle 

contraction was recorded.  
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Comparison of contractility of azygos vein and cardiac muscle preparations 

Comparison of the contractility of azygos ring, atrial strip and papillary muscle 

was performed at 27°C under 0.1 Hz pacing.  The left atrial strip and papillary muscle 

were vertically mounted and azygos ring was horizontally mounted in three different 

organ baths with continuous perfusion oxygenated Kreb’s buffer. Isometric contractile 

force was measured using Aurora Scientific force transducers: Model 403A for azygos 

ring and Model 300B for atrial strip and papillary muscle.  The stimulating voltage was 

set at 2X threshold voltage for each tissue tested [173]. 

The mounted muscle tissues were adjusted to optimal length after 20 min 

equilibration under 0.1 Hz electrical pacing.  The muscles were then paced at 1 Hz and 

tested for the effects of 3 nM, 10 nM and 50 nM isoproterenol on the development of 

isometric force and contractile velocities.  The isoproterenol tests were performed under 

dimed light at 32 ˚C. Each assay was completed in 1 hour to ensure tissue viability. 

Data analysis 

Densitometry analysis of SDS-PAGE gel, Pro-Q stained gel and Western blot 

images scanned at 600 dpi was performed using NIH Image software version 1.61.  

Quantitative data were documented as mean ± SEM.  The statistical significance of 

difference between the mean values was analyzed using paired Student’s t-test or two-

way ANOVA.  

RESULTS 

Abundant cardiomyocytes in the wall of mouse thoracic veins aligned 
perpendicular to the vessel axis 

Reported previously [166], in the cTnT-LacZ transgenic mice, the LacZ reporter 

gene is driven by a cloned promoter of rat cardiac TnT gene, a cardiac muscle-specific 
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gene, to indicate differentiated cardiomyocytes.  The X-gal staining results in Figure 29A 

revealed abundant cardiomyocytes in the wall of thoracic veins including superior vena 

cava (SVC) and azygos vein, but not arteries such as the aorta.  The X-gal-stained 

cardiomyocytes are distributed discontinuously from the heart and aligned perpendicular 

to the vessel axis longitudinally encircling the vessel wall. 

Figure 29. Abundant cardiomyocytes in the wall of mouse thoracic veins aligned 
perpendicular to the vessel axis. A: X-gal staining of thoracic vessels of adult transgenic 
mouse bearing a β-galactosidase reporter gene driven by a cloned cardiac TnT promoter 
demonstrated abundant LacZ-expressing cells in the wall of superior vena cava (SVC) and 
azygos vein, but not aorta. The venous cardiomyocytes are distributed discontinuously from the 
heart. The venous cardiomyocytes are aligned perpendicular to the vessel axis longitudinally 
encircling the vessels. B and C: Low and high-magnification images of H.E. staining of cross 
section of adult mouse azygos vein and aorta. The high-magnification micrograph demonstrated 
clear striation in the venous cardiomyocytes, reflecting sarcomeric structures, in clear contrast 
to the smooth muscle cells in the aortic wall. The striation pattern also indicates the longitudinal 
alignment of venous cardiomyocytes encircling the vessel. 

To further examine the histological structure of the vessel walls, H.E. staining of 

cross-sections of azygos vein and aorta from wild-type adult mice was performed 

(Figures 29B and 29C).  The high-magnification micrograph in Figure 29C showed clear 

sarcomeric striations in the venous cardiomyocytes, reflecting a mature myofibrils 

structure that is in sharp contrast to the smooth muscle layers in the aortic wall.  The 

direction of the striations further indicated the orientation of myofibrils and the 

longitudinal alignment of venous cardiomyocytes encircling the vessel wall. 

The orientation of venous cardiomyocytes encircling the vessels implicated a 
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correlation to the lumen pressure and wall tension, and supports the approach of 

investigating physiological contractility using vessel rings. 

Abundant presence of cardiomyocytes in the proximal portion but absent in the 
distal portion of azygos vein 

Using mAbs recognizing cardiac TnT (CT3 [176]) and cardiac TnI (TnI-1 [73]), 

two cardiac myofilament-specific protein [55], SDS-PAGE and Western blots in Figure 

30 detected high levels of cardiac TnT and cardiac TnI in the proximal portion of mouse 

azygos vein, similar to that in atrial and ventricular muscles.  In contrast, the distal 

portion of mouse azygos vein and aorta express high levels of smooth muscle 

tropomyosins without a detectable level of cardiac troponin (Figure 30).  The results 

indicate the distribution of cardiomyocytes in the proximal portion of azygos vein and the 

anticipated smooth muscle contents in the distal portion of azygos vein.  

 

 

Figure 30. Cardiac myofilament proteins are 
highly expressed in the proximal but not the distal 
portion of adult mouse azygos vein. SDS-PAGE 
and Western blots using mAbs CG1 against smooth-
muscle α-tropomyosin (Sm a-Tm), CGb6 against 
smooth-muscle β-tropomyosin (Sm b Tm), CT3 
against cardiac TnT (cTnT) and TnI-1 against cardiac 
TnI (cTnI) detected high levels of cardiac TnT and 
cardiac TnI in the proximal portion of mouse azygos 
vein, in sharp contrast with the distal portion of 
azygos vein and thoracic aorta that express high 
levels of smooth muscle tropomyosin with no cardiac 
troponin was detectable. Ventricular and atrial muscle 
samples were examined as control. 
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Consistent with the biochemical analysis of muscle type-specific protein contents, 

contractility measurement of rat azygos rings from proximal and distal portion showed 

different contractile properties.  Azygos ring from proximal portion was able to produce 

cardiac-type twitch contraction upon electrical pacing (Figure 31A).  Switching to 

superfusion buffer containing 90 mM KCl paralyzed the twitch contraction of the 

cardiomyocytes as expected while generated a weak and slow smooth muscle type of 

contraction.  Once the superfusion was switched back to physiological Kreb’s solution, 

the cardiac type of contractility resumed (Figure 31A).  

Figure. 31 Distinct contractile properties of the proximal and distal portions of rat azygos 
vein. A: The proximal portion of rat azygos vein produced strong cardiac type twitch 
contractions when stimulated with electrical pacing. Switching to superfusion buffer containing 
90 mM KCl inhibited the twitch contraction of the cardiomyocytes while a weak and slow smooth 
muscle contraction was induced. Returning to normal Kreb’s buffer resumed the cardiac type 
contractility. B: In contrast, the distal portion of rat azygos vein did not respond to electrical 
pacing but generates a typical smooth-muscle type contraction when superfused with buffer 
containing 90 mM KCl, which ceased after returning to normal Kreb’s buffer. 

In contrast, the distal portion of rat azygos vein did not respond to electrical 

pacing but produced a typical smooth-muscle type contraction when superfused with 

buffer containing 90 mM KCl, which ceased after the superfusion was returned to 

normal Kreb’s buffer (Figure 31B).  The data of selective activation of cardiac and 
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smooth muscle contractions clearly demonstrate the presence of physiologically 

functional cardiomyocytes in the proximal portion of azygos vein. 

Heart-like b-adrenergic response of cardiomyocytes in mouse azygos vein.  

When stimulated with increment concentrations of isoproterenol, the force 

development (Figure 32A), contractile (+dF/dt, Fig. 32B) and relaxation (–dF/dt, Figure 

32C) velocities of azygos ring, atrium strip and ventricular papillary muscle were all 

positively responsive with significant increases.  The increasing amplitudes of azygos 

ring and atrial strip groups were significantly higher than that of papillary muscle group, 

possibly reflecting more effective superfusion of thinner tissue preparations.  

Figure 32. Heart-like b-adrenergic response of cardiomyocytes in mouse azygos vein. 
Force development (A), contractile (+dF/dt, B) and relaxation (–dF/dt, C) velocities of azygos 
ring, atrium strip and ventricular papillary muscle all exhibited positive responses upon the 
treatment of increment concentrations of isoproterenol. *P<0.05 versus the value at the 
immediate lower concentration of isoproterenol; #P<0.05 versus the papillary muscle group; n = 
8 for azygos veins, n = 3 each for atrium and papillary muscle groups. 

Pro-Q Diamond stained SDS-gel demonstrated significantly increased 

phosphorylation of myosin binding protein C and cardiac TnI in vivo upon isoproterenol 

treatment (Figure 33).  The results support the ex vivo contractility study that showed 

positive responses of force development and contractile and relaxation velocities to 

isoproterenol stimulation.  The phosphorylation of myosin binding protein C and cardiac 

TnI did not show significant difference between azygos vein, atrium and ventricle groups 
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(Figures 33B and 33C).  These results indicate heart-like b-adrenergic-protein kinase A 

signaling in the venous cardiomyocytes. 

Figure 33. Similar isoproterenol-
induced in vivo phosphorylation of 
myosin binding protein C and 
cardiac TnI in adult mouse azygos 
vein, atrial and ventricular muscles. 
A: Pro-Q Diamond stained SDS-gel 
showed that phosphorylation of myosin 
binding protein C (MyBP-C) and 
cardiac TnI (cTnI) was significantly 
increased upon isoproterenol treatment 
in vivo. Total cardiac TnI was quantified 
from Western blot using mAb TnI-1 as 
protein input control. B and C: 
Densitometry quantification of the Pro-
Q gel for phosphorylated MyBP-C and 
cTnI. Normalized to the cardiac TnI 
Western blot, there was no significant 
difference in the levels of isoproterenol-
stimulated phosphorylation of MyBP-C 
and cTnI in the azygos vein, atrium and 
ventricle samples. n = 3 each for 
azygos vein, atrium and ventricle 
groups. 

Contraction and relaxation of azygos cardiomyocytes are slightly slower than that 
of atrial muscle but significantly faster than ventricular papillary muscle 

The comparison between representative twitch contractions of azygos ring, 

atrium strip and ventricular papillary muscle demonstrated that the atrium muscle 

contracts and relaxes the fastest, papillary muscle the slowest, and the azygos 

cardiomyocytes is in between (Figure 34A).  Quantitative study of the time parameters 

demonstrated that azygos cardiomyocytes contracted slightly slower than that of atrial 

muscle but significantly faster than ventricular papillary muscle (Figure 34B).  The 

results suggest that the venous cardiomyocytes are similar but not identical to atrial 

muscle in contractile properties.  
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Figure. 34. Time parameters of twitch contractions of azygos vein, atrium strips and 
ventricular papillary muscle from 3-week mice. A: Comparison of representative twitch 
traces of azygos ring, atrium strip and papillary muscle. B: Time parameters of contraction and 
relaxation of azygos ring, atrium strip and papillary muscle showed that the azygos ring 
contracted slightly slower than that of atrial muscle but significantly faster than ventricular 
papillary muscle. TPT: time to peak tension; TR75: time to 75% relaxation. **P<0.01 versus 
papillary muscle and atrium strip.   

Discussion 

We recently demonstrated the abundant presence of cardiomyocytes in the wall 

of thoracic veins of adult mouse and rat.  Despite many revisits, the developmental 

origin of the thoracic venous cardiomyocytes, their differentiation state and their 

physiological function are not yet understood.  The highly differentiated morphology and 

myofilament protein contents of the venous cardiomyocytes [166] suggested contractile 

functions.  We further investigated in the present study the contractility of mouse and rat 

azygos venous rings in comparison with that of atrial strips and ventricular papillary 

muscle. The results contributed several interesting observations.  

Distribution and orientation of the venous cardiomyocytes suggest a potential 
function in regulating vessel diameter 

Ectopic beats originated from the atrial sleeves are implicated as a possible 

source of atrial fibrillation [162] [163] [164] [165].  However, the anatomical discontinuity 
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of the venous cardiomyocyte from the heart mass (Figure 29A) distinguishes the venous 

cardiomyocytes studied here from the extension of cardiac muscle in true atrial sleeves 

and does not support a role in generating arrhythmia. 

A few hypotheses have been proposed for the physiological function of the 

venous cardiomyocytes, one of which is that these muscle cells may function as a 

“throttle valve” action to prevent backflow of blood during atrial systole and play a role in 

regulation of pulmonary blood flow [177].  Some observations, including the 

encirclement orientation of myofibrils in the cardiomyocytes in vessel wall (Figure 29), 

are in favor of this hypothesis.  Other supports include that the electrical propagation of 

cardiomyocytes in rat pulmonary veins is toward the lung [178]; and the occurrence of 

intercalated discs between venous cardiomyocytes enables them to contract in 

synchronization [166, 178].  If this mechanism exists, it would be more necessary for the 

rodents rather than the larger mammals, that have abundant cardiomyocytes in the 

pulmonary vein [166, 167], possibly due to their very high heart rate that requires 

assistance with filling of the heart during the short diastoles.  

Venous cardiomyocytes are physiologically responsive to b-adrenergic regulation 

The b-adrenergic signaling pathway plays a critical role in the regulation of 

myocardial contractility and heart function.  Activation of b-adrenoceptors on the plasma 

membrane of cardiomyocytes by catecholamines stimulates adenylyl cyclase and cAMP 

production, which in turn leads to activation of cAMP-dependent protein kinase (PKA) 

and phosphorylation of a multitude of intracellular substrates in the Ca2+ handling 

system and myofilaments, such as cardiac TnI and myosin-binding protein C [179].  In 

the present study we showed that stimulation with isoproterenol in vivo and ex vivo 
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produced cardiac-like b-adrenergic responses in the venous cardiomyocytes, indicating 

a physiological regulation.  

Our ex vivo contractility study shows that azygos ring, atrial strip and papillary 

muscle groups are all responsive to the increment concentration of isoproterenol, 

producing increasing contraction force and velocity.  Nevertheless, the increasing 

amplitudes of azygos ring and atrial strip groups were similar and significantly higher 

than that of the papillary muscle group (Figure 32).  This difference may be attributed to 

the efficiency of superfusion in the ex vivo contractility study.  A sufficient nutrient and 

oxygen supply is critical for the function of ex vivo myocardial muscle preparations [173].  

b-Adrenergic stimulation of the muscle preparations increases the energy expenditure 

and demand of the contractile machineries in cardiomyocytes.  Papillary muscles are 

the thickest and most compact in comparison with venous rings and atrial strips, thus 

the energy shortage under superfusion conditions would be more apparent, especially 

at the treatment of higher concentration of isoproterenol.  Supporting this hypothesis 

other than intrinsic difference among the three types of cardiomyocytes in b-adrenergic 

responsiveness, in vivo isoproterenol treatment produced similar responses as shown 

by the similarly increased levels of phosphorylation of myofilament proteins (Figure 33) 

in azygos vein, atrial and ventricular muscles. 

The results of both ex vivo and in vivo isoproterenol treatment demonstrate the 

fully developed b-adrenergic signaling in the venous cardiomyocytes, supporting their 

functional state of physiological maturity. 
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Venous cardiomyocytes are similar to atrial cardiac muscle in contractility and 
myosin content 

Comparison of representative twitch traces showed that the contractions of 

venous cardiomyocytes are slightly slower than that of atrium muscle strips but 

significantly faster than that of ventricular papillary muscle (Figure 34).  Our previous 

study demonstrated identical patterns of troponin and myosin heavy chain isoform 

expressions in mouse and rat thoracic vein cardiomyocytes and atrial and ventricular 

cardiac muscles, but suggested an expression of atrial specific isoform of myosin light 

chain (MLC) 2 in venous cardiomyocytes [166], which might contribute to the similar 

contractile features of azygos rings and atrial strips.  

In cardiomyocytes, sarcomeric contraction results from the Ca2+-regulated cross-

bridge interactions between the myosin motor and actin filament. Ca2+-binding to 

troponin allows myosin heads to form strong cross-bridges with the actin filament and 

activating the myosin ATPase.  The energy from ATP hydrolysis displaces the thin 

filaments relative to the thick filaments and leads to sarcomere shortening and muscle 

contraction [180].  Myosin light chain 1 and MLC2 are key components of the myosin 

motor [181].  The expression of atrial and ventricular isoforms of MLC2 is regulated in a 

muscle type specific manner in the heart.  The expression of same MLC2 in atria and 

venous cardiomyocytes may represent their similarity in the cellular backgrounds for 

contractility.  

The different isoforms as well as phosphorylation levels of MLC2 play critical 

roles in modulating cross-bridge cycling and Ca2+ sensitivity of the myofilament in force 

development [182, 183].  Our phosphoprotein staining data in Figure 33 showed that 

MLC2 phosphorylation was similar in all of the three muscle types and positively 
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responded to isoproterenol treatment.  This observation further supports that the MLC 

isoforms may be a key contributor to the similarity between azygos cardiomyocytes and 

atrial muscle as well as the difference from ventricular muscle. 

Origin, differentiated phenotype, and maintenance of venous cardiomyocytes 

Plausible findings in the present study demonstrate that the abundant 

cardiomyocytes in the wall of rodent thoracic veins possess fully differentiated cardiac 

muscle phenotype despite their anatomical and functional segregation from the heart.  

Cell lineage tracing studies demonstrated in mice that the cardiomyocytes in pulmonary 

veins are not originated from atrial cells but formed by differentiation of pulmonary 

mesenchymal cells [184].  The cardiomyocyte content in the thoracic veins is prominent 

in the embryo and recedes progressively after birth [178].  We have previously showed 

that the developmental regulation of myofilament protein expression is synchronized in 

the venous cardiomyocytes and the heart [166].  These facts indicate that the 

differentiation of the cardiac phenotype in the adult venous cardiomyocytes is pre-

determined by intrinsic lineage commitment of progenitor cells.  On the other hand, the 

effective maintenance of fully differentiated phenotype of the cardiomyocytes in the 

venous walls of adult mouse and rat indicates the feasibility of supporting the 

physiologically differentiated cardiomyocyte in a non-heart tissue environment.  Such 

environmental determinants deserve more future studies that would lead to a better 

understanding of myocardial regeneration and repair.   
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CHAPTER 6 - CONCLUSIONS 

For the first time, this work has demonstrated that the development of 

atherosclerosis in ApoE-/- mice can be attenuated via modulating the motility and other 

actin cytoskeleton-based functions in macrophages.   

The results in Chapter 2 revealed that ApoE has weak immunogenicity possibly 

due to predicted immune tolerance of B lymphocytes to plasma proteins.  However, 

ApoE can potentially serve as an effective carrier for delivering other immunogens such 

as the Tx segment.  Although the combination of ApoE with another weak immunogen, 

i.e., the C-terminal segment of calponin 2 did not increase the immunogenicity of either 

of the two components, the fact that mouse ApoE can be recognized by the immune 

system of mouse as an effective carrier intrigued us to test a novel approach to 

generating useful antibodies by immunizing ApoE-KO mice to avoid the intrinsic issue of 

immune tolerance in developing antibody tools against plasma proteins like ApoE, 

especially from the species same as the host to be immunized. 

ApoE-/- mice spontaneously develop atherosclerotic lesions on regular diet due 

to disorders of cholesterol metabolism and dramatically increased plasma cholesterol 

level.  The study in Chapter 3 demonstrated that either global or myeloid-cell specific 

deletion of calponin 2 from ApoE-/- mice can significantly attenuated the development of 

atherosclerosis.  The fact that myeloid cell-specific KO of Cnn2 has the same or 

stronger effect in comparison with that of global KO indicates that the therapeutic effect 

was primarily via the function of myeloid cells.  More in vitro experiments revealed the 

underlying cellular and molecular mechanisms: Deletion of calponin 2 significantly 

increased the motility of macrophages and compensated for the impaired motility of 
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foam cells, while there is no difference between WT and Cnn2 KO macrophages in 

regard of lipid ingestion. Immunohistochemistry study on the sections at aortic root 

further found that attenuated atherosclerotic lesions is associated with reduced 

macrophage infiltration, indicating the enhanced motility by calponin 2 deletion 

facilitates macrophages and the derived foam cells to migrate out the atherosclerotic 

lesions and diminish inflammatory response.  The investigation of cytokine profiles 

showed that calponin 2-null macrophages produced less pro-inflammatory cytokines 

than that of WT macrophages, and the up-regulation of pro-inflammatory cytokines in 

foam cells was also attenuated by the deletion of calponin 2.  The less activation of 

Cnn2-/- macrophages and foam cells is likely related to the weakened adhesion by 

deletion of calponin 2.  Calponin 2 is an actin-binding protein and regulates the 

dynamics of actin cytoskeleton.  Deletion of calponin 2 from macrophages results 

macrophage less adhesive and less activated in inflammatory responses along with 

elevated motility.  These functional changes of macrophages play a therapeutic role in 

treatment and prevention of atherosclerosis.  These data provide evidence that changes 

in myosin motor-based cytoskeleton dynamics and cell adhesion alter macrophage 

activation, implicating a potentially novel therapeutic target for the treatment and 

prevention of atherosclerosis and other inflammatory diseases.  

Based on the data presented in Chapter 3, the regulation of cytoskeleton is 

known to play a critical role in cell functions.  The studies in Chapter 4 further addressed 

another calponin family related protein: SM22a, in the mechanoregulation of actin 

cytoskeleton.  We report for the first time that the expression and degradation of SM22a 

is regulated by the mechanical tension of cytoskeleton.  SM22a is abundantly 
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expressed in mature smooth muscle, and thus was considered as a biomarker for 

smooth muscle differentiation. However, recent research publications suggested that 

SM22a is also associated with non-contractile actin filaments.  Consistently, our data 

demonstrated that SM22a may play a critical role in mechanical force transduction of 

actin cytoskeleton in fibroblasts.  Chapter 3 and Chapter 4 together demonstrated that 

the calponin family proteins interactively regulate the contractile and non-contractile 

actin filaments in smooth muscle and non-muscle cells with impacts on many cell 

motility-based functions.   

Chapter 5 documented the physiological contractility of cardiomyocytes in the 

wall of mouse and rat azygos vein.  We found that there is abundant presence of 

mature cardiomyocytes in the wall of thoracic veins of adult mouse and rat.  The venous 

cardiomyocytes demonstrated cardiac muscle type of twitch contractions similar to that 

in the heart, indicating a fully differentiated phenotype.  The co-existence of cardiac 

muscle and smooth muscle in these vessel walls provides a novel model to study the 

differentiation of cardiac myocytes and the impact of the mechanical tissue 

environment. 

In conclusion, my Ph.D. dissertation research extensively studied the mechanical 

force and actin cytoskeleton-based regulation of cell functions, especially the regulation 

of macrophage’s function in the pathogenesis of atherosclerosis. These experimental 

data have made valuable contributions to the understanding of cell-mechanical force 

regulation and motility with many applications in future cardiovascular and cell 

physiological research as well as the development of new treatment for human 

diseases.   
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APPENDIX A 

IACUC Protocol Approval Letter 
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APPENDIX B 

NCBI database for calponin isoforms analyzed (Figure 2) 

The NCBI database accession numbers of the sequences analyzed are: African clawed frog 
calponin 1, NP_001080753.1; African clawed frog calponin 2, NP_001085014.1; African clawed 
frog calponin 3, NP_001080482.1; Black flying fox calponin 1, ELK17809. 1; Black flying fox 
calponin 2, ELK19295.1; Black flying fox calponin 3, ELK05808.1; Brandt’s bat calponin 1, 
EPQ04681.1; Brandt’s bat calponin 2, EPQ08061.1; Brown tree snake calponin 2, JAG68493.1; 
Cattle calponin 1, NP_001039844.1; Cattle calponin 2, AAI03381.1;  Cattle calponin 3, 
NP_001033268.1; Channel catfish, AHH43034.1；Chicken calponin 1, NP_990847.1; Chicken 
calponin 2, NP_001135728.1; Chimpanzee calponin 1, NP_001267033.1;  Chimpanzee 
calponin 2, JAA13388.1;  Chimpanzee calponin 3, JAA44470.1; Chinese hamster calponin 1, 
EGV96164.1; Chinese hamster calponin 2, EGV99480.1; Chinese hamster calponin 3, 
EGW11625.1; Croaker calponin 1, KKF32470.1; Croaker calponin 2, KKF29575.1; Croaker 
calponin 3, KKF23334.1; Damara mole calponin 1, KFO28782.1; Damara mole calponin 2, 
KFO28912.1; Damara mole calponin 3, KFO26533.1; Eastern diamondback rattlesnake 
calponin 2, AFJ49586.1; Ferret calponin 1, NP_001297140.1; Green turtle calponin 1, 
EMP37252.1; Green turtle calponin 3, EMP30806.1; Human calponin 1, NP_001290.2; Human 
calponin 2, AAI48265.1; Human calponin 3, AAB35752.1; King cobra calponin 3, ETE62831.1; 
Marmoset calponin 3, JAB48100.1; Mouse calponin 1, AAI38864.1; Mouse calponin 2, 
EDL31614.1; Mouse calponin 3, AAH85268.1; Mouse-eared bat calponin 1, ELK28732.1; 
Mouse-eared bat calponin 2, ELK29427.1; Mouse-eared bat calponin 3, ELK30701.1; Naked 
mole calponin 1, EHA97296.1; Naked mole calponin 2, EHB16944.1; Naked mole calponin 3, 
EHB05382.1; Orangutan calponin 2, NP_001124601.1; Rat calponin 1, NP_113935.1; Rat 
calponin 3, NP_062232.1; Rhesus macaque calponin 3, NP_001248738.1; Salmon calponin 1, 
NP_001139857.1; Salmon calponin 2, NP_001133873.1; Salmon calponin 3, NP_001133337.1; 
Sheep, calponin 1, NP_001009456.1; Snakehead calponin 2, AFJ79963.1; Timber rattlesnake 
calponin 2, JAG45504.1; Western clawed frog calponin 1, NP_001015796.1; NP_998841.1; 
Western clawed frog calponin 2, Western clawed frog calponin 3, NP_989257.1; Wild swine 
calponin 1, NP_999043.1; Yak calponin 1, ELR59973.1; Yak calponin 2, ELR60222.1; Yak 
calponin 3, ELR46902.1; Zebrafish calponin 2, NP_998514.1; Zebrafish calponin 3, 
NP_956047.1.  
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APPENDIX C 

NCBI database for calponin and SM22 isoforms analyzed (Figure 28) 

The NCBI database accession numbers of the sequences analyzed are: Chicken calponin 1, 
NP_990847.1; Chicken calponin 2, NP_001135728.1; Chicken calponin 3, XP_422326.3; 
Chicken SM22, AAA48782.1; Human calponin 1, NP_001290.2; Human calponin 2, 
AAI48265.1; Human calponin 3, AAB35752.1; Human SM22, NP_001001522.1; Mouse 
calponin 1, AAI38864.1; Mouse calponin 2, EDL31614.1; Mouse calponin 3, AAH85268.1; 
Mouse SM22, CAA92941.1. 
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APPENDIX D 

Copyright License Agreement for Chapter 3 
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APPENDIX E 

Copyright License Agreement for Chapter 5 

 

  



www.manaraa.com

 

	

110	

	

REFERENCES 

1. Q.Q. Huang, M.M. Hossain, K. Wu, K. Parai, R.M. Pope, J.P. Jin, Role of H2-

calponin in regulating macrophage motility and phagocytosis, The Journal of 

biological chemistry 283 (2008) 25887-25899. 

2. M. Moazzem Hossain, X. Wang, R.C. Bergan, J.P. Jin, Diminished expression of 

h2-calponin in prostate cancer cells promotes cell proliferation, migration and the 

dependence of cell adhesion on substrate stiffness, FEBS open bio 4 (2014) 

627-636. 

3. E.N. Marieb, Human anatomy and physiology, 2nd ed., Benjamin/Cummings 

Pub. Co., Redwood City, Calif., 1992. 

4. R. Ross, L. Harker, Hyperlipidemia and atherosclerosis, Science 193 (1976) 

1094-1100. 

5. R. Ross, Atherosclerosis is an inflammatory disease, American heart journal 138 

(1999) S419-420. 

6. P. Libby, Inflammation in atherosclerosis, Arteriosclerosis, thrombosis, and 

vascular biology 32 (2012) 2045-2051. 

7. M. Nahrendorf, F.K. Swirski, Immunology. Neutrophil-macrophage 

communication in inflammation and atherosclerosis, Science 349 (2015) 237-

238. 

8. K.J. Moore, I. Tabas, Macrophages in the pathogenesis of atherosclerosis, Cell 

145 (2011) 341-355. 

9. A. Tedgui, Z. Mallat, Cytokines in atherosclerosis: pathogenic and regulatory 

pathways, Physiological reviews 86 (2006) 515-581. 



www.manaraa.com

 

	

111	

	

10. C. Weber, A. Zernecke, P. Libby, The multifaceted contributions of leukocyte 

subsets to atherosclerosis: lessons from mouse models, Nature reviews. 

Immunology 8 (2008) 802-815. 

11. C.K. Glass, J.L. Witztum, Atherosclerosis. the road ahead, Cell 104 (2001) 503-

516. 

12. G.K. Hansson, Immune mechanisms in atherosclerosis, Arteriosclerosis, 

thrombosis, and vascular biology 21 (2001) 1876-1890. 

13. J.D. Smith, E. Trogan, M. Ginsberg, C. Grigaux, J. Tian, M. Miyata, Decreased 

atherosclerosis in mice deficient in both macrophage colony-stimulating factor 

(op) and apolipoprotein E, Proceedings of the National Academy of Sciences of 

the United States of America 92 (1995) 8264-8268. 

14. H.M. Dansky, S.A. Charlton, M.M. Harper, J.D. Smith, T and B lymphocytes play 

a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient 

mouse, Proceedings of the National Academy of Sciences of the United States of 

America 94 (1997) 4642-4646. 

15. A. Daugherty, E. Pure, D. Delfel-Butteiger, S. Chen, J. Leferovich, S.E. Roselaar, 

D.J. Rader, The effects of total lymphocyte deficiency on the extent of 

atherosclerosis in apolipoprotein E-/- mice, The Journal of clinical investigation 

100 (1997) 1575-1580. 

16. R.R. Packard, A.H. Lichtman, P. Libby, Innate and adaptive immunity in 

atherosclerosis, Semin Immunopathol 31 (2009) 5-22. 

17. T.B. Rajavashisth, A. Andalibi, M.C. Territo, J.A. Berliner, M. Navab, A.M. 

Fogelman, A.J. Lusis, Induction of endothelial cell expression of granulocyte and 



www.manaraa.com

 

	

112	

	

macrophage colony-stimulating factors by modified low-density lipoproteins, 

Nature 344 (1990) 254-257. 

18. G.J. Randolph, Emigration of monocyte-derived cells to lymph nodes during 

resolution of inflammation and its failure in atherosclerosis, Curr Opin Lipidol 19 

(2008) 462-468. 

19. N.R. Patel, M. Bole, C. Chen, C.C. Hardin, A.T. Kho, J. Mih, L. Deng, J. Butler, 

D. Tschumperlin, J.J. Fredberg, R. Krishnan, H. Koziel, Cell elasticity determines 

macrophage function, PloS one 7 (2012) e41024. 

20. N.G. Sosale, K.R. Spinler, C. Alvey, D.E. Discher, Macrophage engulfment of a 

cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 

'Marker of Self' CD47, and target physical properties, Curr Opin Immunol 35 

(2015) 107-112. 

21. K. Takahashi, M. Abe, K. Hiwada, T. Kokubu, A novel troponin T-like protein 

(calponin) in vascular smooth muscle: interaction with tropomyosin paracrystals, 

Journal of hypertension. Supplement : official journal of the International Society 

of Hypertension 6 (1988) S40-43. 

22. J. Gao, J.M. Hwang, J.P. Jin, Complete nucleotide sequence, structural 

organization, and an alternatively spliced exon of mouse h1-calponin gene, 

Biochemical and biophysical research communications 218 (1996) 292-297. 

23. P. Strasser, M. Gimona, H. Moessler, M. Herzog, J.V. Small, Mammalian 

calponin. Identification and expression of genetic variants, FEBS letters 330 

(1993) 13-18. 



www.manaraa.com

 

	

113	

	

24. H. Masuda, K. Tanaka, M. Takagi, K. Ohgami, T. Sakamaki, N. Shibata, K. 

Takahashi, Molecular cloning and characterization of human non-smooth muscle 

calponin, Journal of biochemistry 120 (1996) 415-424. 

25. D. Applegate, W. Feng, R.S. Green, M.B. Taubman, Cloning and expression of a 

novel acidic calponin isoform from rat aortic vascular smooth muscle, The 

Journal of biological chemistry 269 (1994) 10683-10690. 

26. J.P. Jin, M.P. Walsh, M.E. Resek, G.A. McMartin, Expression and epitopic 

conservation of calponin in different smooth muscles and during development, 

Biochemistry and cell biology = Biochimie et biologie cellulaire 74 (1996) 187-

196. 

27. M.M. Hossain, D.Y. Hwang, Q.Q. Huang, Y. Sasaki, J.P. Jin, Developmentally 

regulated expression of calponin isoforms and the effect of h2-calponin on cell 

proliferation, Am J Physiol Cell Physiol 284 (2003) C156-167. 

28. Y. Fukui, H. Masuda, M. Takagi, K. Takahashi, K. Kiyokane, The presence of h2-

calponin in human keratinocyte, Journal of dermatological science 14 (1997) 29-

36. 

29. M.M. Hossain, J.F. Crish, R.L. Eckert, J.J. Lin, J.P. Jin, h2-Calponin is regulated 

by mechanical tension and modifies the function of actin cytoskeleton, The 

Journal of biological chemistry 280 (2005) 42442-42453. 

30. M.M. Hossain, P.G. Smith, K. Wu, J.P. Jin, Cytoskeletal tension regulates both 

expression and degradation of h2-calponin in lung alveolar cells, Biochemistry 45 

(2006) 15670-15683. 



www.manaraa.com

 

	

114	

	

31. J. Tang, G. Hu, J. Hanai, G. Yadlapalli, Y. Lin, B. Zhang, J. Galloway, N. Bahary, 

S. Sinha, B. Thisse, C. Thisse, J.P. Jin, L.I. Zon, V.P. Sukhatme, A critical role 

for calponin 2 in vascular development, The Journal of biological chemistry 281 

(2006) 6664-6672. 

32. W.R. Jiang, G. Cady, M.M. Hossain, Q.Q. Huang, X. Wang, J.P. Jin, 

Mechanoregulation of h2-calponin gene expression and the role of Notch 

signaling, The Journal of biological chemistry 289 (2014) 1617-1628. 

33. P.C. Hines, X. Gao, J.C. White, A. D'Agostino, J.P. Jin, A novel role of h2-

calponin in regulating whole blood thrombosis and platelet adhesion during 

physiologic flow, Physiol Rep 2 (2014). 

34. R. Liu, J.P. Jin, Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin 

cytoskeleton functions in smooth muscle and non-muscle cells, Gene 585 (2016) 

143-153. 

35. H. Trabelsi-Terzidis, A. Fattoum, A. Represa, F. Dessi, Y. Ben-Ari, E. der 

Terrossian, Expression of an acidic isoform of calponin in rat brain: western blots 

on one- or two-dimensional gels and immunolocalization in cultured cells, The 

Biochemical journal 306 ( Pt 1) (1995) 211-215. 

36. C. Agassandian, M. Plantier, A. Fattoum, A. Represa, E. der Terrossian, 

Subcellular distribution of calponin and caldesmon in rat hippocampus, Brain 

research 887 (2000) 444-449. 

37. L. Ferhat, G. Charton, A. Represa, Y. Ben-Ari, E. der Terrossian, M. 

Khrestchatisky, Acidic calponin cloned from neural cells is differentially 



www.manaraa.com

 

	

115	

	

expressed during rat brain development, The European journal of neuroscience 8 

(1996) 1501-1509. 

38. L. Ferhat, M. Esclapez, A. Represa, A. Fattoum, T. Shirao, Y. Ben-Ari, Increased 

levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced 

seizures, Hippocampus 13 (2003) 845-858. 

39. M. Plantier, A. Fattoum, B. Menn, Y. Ben-Ari, E. Der Terrossian, A. Represa, 

Acidic calponin immunoreactivity in postnatal rat brain and cultures: subcellular 

localization in growth cones, under the plasma membrane and along actin and 

glial filaments, The European journal of neuroscience 11 (1999) 2801-2812. 

40. Y. Shibukawa, N. Yamazaki, E. Daimon, Y. Wada, Rock-dependent calponin 3 

phosphorylation regulates myoblast fusion, Experimental cell research 319 

(2013) 633-648. 

41. Y. Shibukawa, N. Yamazaki, K. Kumasawa, E. Daimon, M. Tajiri, Y. Okada, M. 

Ikawa, Y. Wada, Calponin 3 regulates actin cytoskeleton rearrangement in 

trophoblastic cell fusion, Molecular biology of the cell 21 (2010) 3973-3984. 

42. K. Takahashi, R. Yoshimoto, K. Fuchibe, A. Fujishige, M. Mitsui-Saito, M. Hori, 

H. Ozaki, H. Yamamura, N. Awata, S. Taniguchi, M. Katsuki, T. Tsuchiya, H. 

Karaki, Regulation of shortening velocity by calponin in intact contracting smooth 

muscles, Biochemical and biophysical research communications 279 (2000) 150-

157. 

43. A. Flemming, Q.Q. Huang, J.P. Jin, H. Jumaa, S. Herzog, A Conditional 

Knockout Mouse Model Reveals That Calponin-3 Is Dispensable for Early B Cell 

Development, PloS one 10 (2015) e0128385. 



www.manaraa.com

 

	

116	

	

44. M. Gimona, K. Djinovic-Carugo, W.J. Kranewitter, S.J. Winder, Functional 

plasticity of CH domains, FEBS letters 513 (2002) 98-106. 

45. L. Fontao, D. Geerts, I. Kuikman, J. Koster, D. Kramer, A. Sonnenberg, The 

interaction of plectin with actin: evidence for cross-linking of actin filaments by 

dimerization of the actin-binding domain of plectin, Journal of cell science 114 

(2001) 2065-2076. 

46. V.E. Galkin, A. Orlova, A. Fattoum, M.P. Walsh, E.H. Egelman, The CH-domain 

of calponin does not determine the modes of calponin binding to F-actin, Journal 

of molecular biology 359 (2006) 478-485. 

47. B.D. Leinweber, P.C. Leavis, Z. Grabarek, C.L. Wang, K.G. Morgan, Extracellular 

regulated kinase (ERK) interaction with actin and the calponin homology (CH) 

domain of actin-binding proteins, The Biochemical journal 344 Pt 1 (1999) 117-

123. 

48. M. Mezgueldi, A. Fattoum, J. Derancourt, R. Kassab, Mapping of the functional 

domains in the amino-terminal region of calponin, The Journal of biological 

chemistry 267 (1992) 15943-15951. 

49. [49] S.J. Winder, M.P. Walsh, Smooth muscle calponin. Inhibition of actomyosin 

MgATPase and regulation by phosphorylation, The Journal of biological 

chemistry 265 (1990) 10148-10155. 

50. M. Abe, K. Takahashi, K. Hiwada, Effect of calponin on actin-activated myosin 

ATPase activity, Journal of biochemistry 108 (1990) 835-838. 



www.manaraa.com

 

	

117	

	

51. S.J. Winder, M.P. Walsh, C. Vasulka, J.D. Johnson, Calponin-calmodulin 

interaction: properties and effects on smooth and skeletal muscle actin binding 

and actomyosin ATPases, Biochemistry 32 (1993) 13327-13333. 

52. V.P. Shirinsky, K.G. Biryukov, J.M. Hettasch, J.R. Sellers, Inhibition of the 

relative movement of actin and myosin by caldesmon and calponin, The Journal 

of biological chemistry 267 (1992) 15886-15892. 

53. J.R. Haeberle, Calponin decreases the rate of cross-bridge cycling and increases 

maximum force production by smooth muscle myosin in an in vitro motility assay, 

The Journal of biological chemistry 269 (1994) 12424-12431. 

54. T. Kake, S. Kimura, K. Takahashi, K. Maruyama, Calponin induces actin 

polymerization at low ionic strength and inhibits depolymerization of actin 

filaments, The Biochemical journal 312 ( Pt 2) (1995) 587-592. 

55. J.P. Jin, Z. Zhang, J.A. Bautista, Isoform diversity, regulation, and functional 

adaptation of troponin and calponin, Critical reviews in eukaryotic gene 

expression 18 (2008) 93-124. 

56. K.C. Wu, J.P. Jin, Calponin in non-muscle cells, Cell biochemistry and biophysics 

52 (2008) 139-148. 

57. A. Bartegi, C. Roustan, R. Kassab, A. Fattoum, Fluorescence studies of the 

carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts, 

European journal of biochemistry / FEBS 262 (1999) 335-341. 

58. C. Danninger, M. Gimona, Live dynamics of GFP-calponin: isoform-specific 

modulation of the actin cytoskeleton and autoregulation by C-terminal 

sequences, Journal of cell science 113 Pt 21 (2000) 3725-3736. 



www.manaraa.com

 

	

118	

	

59. G. Burgstaller, W.J. Kranewitter, M. Gimona, The molecular basis for the 

autoregulation of calponin by isoform-specific C-terminal tail sequences, Journal 

of cell science 115 (2002) 2021-2029. 

60. M.M. Hossain, G. Zhao, M.-S. Woo, J.H.C. Wang, J.P. Jin, h2-calponin Gene 

Knockout Increases Traction Force of Mouse Fibroblasts in vitro, Biophysical 

journal 108  143a. 

61. M.M. Hossain, G. Zhao, M.S. Woo, J.H. Wang, J.P. Jin, Deletion of calponin 2 in 

mouse fibroblasts increases myosin II-dependent cell traction force, Biochemistry 

(2016). 

62. M.P. Walsh, The Ayerst Award Lecture 1990. Calcium-dependent mechanisms of 

regulation of smooth muscle contraction, Biochemistry and cell biology = 

Biochimie et biologie cellulaire 69 (1991) 771-800. 

63. G.E. Jones, Cellular signaling in macrophage migration and chemotaxis, Journal 

of leukocyte biology 68 (2000) 593-602. 

64. Q.Q. Huang, M.M. Hossain, W. Sun, L. Xing, R.M. Pope, J.P. Jin, Deletion of 

calponin 2 in macrophages attenuates the severity of inflammatory arthritis in 

mice, Am J Physiol Cell Physiol (2016) ajpcell 00331 02015. 

65. J.L. Goldstein, M.S. Brown, The low-density lipoprotein pathway and its relation 

to atherosclerosis, Annu Rev Biochem 46 (1977) 897-930. 

66. R.L. Reddick, S.H. Zhang, N. Maeda, Atherosclerosis in mice lacking apo E. 

Evaluation of lesional development and progression, Arteriosclerosis and 

thrombosis : a journal of vascular biology / American Heart Association 14 (1994) 

141-147. 



www.manaraa.com

 

	

119	

	

67. A. Daugherty, Atherosclerosis: cell biology and lipoproteins, Curr Opin Lipidol 13 

(2002) 453-455. 

68. J.P. Jin, L.B. Smillie, An unusual metal-binding cluster found exclusively in the 

avian breast muscle troponin T of Galliformes and Craciformes, FEBS letters 341 

(1994) 135-140. 

69. O. Ogut, J.P. Jin, Expression, zinc-affinity purification, and characterization of a 

novel metal-binding cluster in troponin T: metal-stabilized alpha-helical structure 

and effects of the NH2-terminal variable region on the conformation of intact 

troponin T and its association with tropomyosin, Biochemistry 35 (1996) 16581-

16590. 

70. F.W. Studier, A.H. Rosenberg, J.J. Dunn, J.W. Dubendorff, Use of T7 RNA 

polymerase to direct expression of cloned genes, Methods in enzymology 185 

(1990) 60-89. 

71. J.P. Jin, M.L. Malik, J.J. Lin, Monoclonal antibodies against cardiac myosin 

heavy chain, Hybridoma 9 (1990) 597-608. 

72. M. Little, S.M. Kipriyanov, F. Le Gall, G. Moldenhauer, Of mice and men: 

hybridoma and recombinant antibodies, Immunol Today 21 (2000) 364-370. 

73. J.P. Jin, R.A. Samanez, Evolution of a metal-binding cluster in the NH(2)-terminal 

variable region of avian fast skeletal muscle troponin T: functional divergence on 

the basis of tolerance to structural drifting, Journal of molecular evolution 52 

(2001) 103-116. 



www.manaraa.com

 

	

120	

	

74. P.C. Leavis, J. Gergely, Thin filament proteins and thin filament-linked regulation 

of vertebrate muscle contraction, CRC critical reviews in biochemistry 16 (1984) 

235-305. 

75. T.A. Cooper, C.P. Ordahl, A single cardiac troponin T gene generates embryonic 

and adult isoforms via developmentally regulated alternate splicing, The Journal 

of biological chemistry 260 (1985) 11140-11148. 

76. R.E. Breitbart, B. Nadal-Ginard, Complete nucleotide sequence of the fast 

skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies 

divergence, Journal of molecular biology 188 (1986) 313-324. 

77. J.P. Jin, Q.Q. Huang, H.I. Yeh, J.J. Lin, Complete nucleotide sequence and 

structural organization of rat cardiac troponin T gene. A single gene generates 

embryonic and adult isoforms via developmentally regulated alternative splicing, 

Journal of molecular biology 227 (1992) 1269-1276. 

78. E.A. Bucher, G.K. Dhoot, M.M. Emerson, M. Ober, C.P. Emerson, Jr., Structure 

and evolution of the alternatively spliced fast troponin T isoform gene, The 

Journal of biological chemistry 274 (1999) 17661-17670. 

79. L.B. Smillie, K. Golosinska, F.C. Reinach, Sequences of complete cDNAs 

encoding four variants of chicken skeletal muscle troponin T, The Journal of 

biological chemistry 263 (1988) 18816-18820. 

80. F. Schachat, J.M. Schmidt, M. Maready, M.M. Briggs, Chicken perinatal troponin 

Ts are generated by a combination of novel and phylogenetically conserved 

alternative splicing pathways, Developmental biology 171 (1995) 233-239. 



www.manaraa.com

 

	

121	

	

81. F.H. Arnold, B.L. Haymore, Engineered metal-binding proteins: purification to 

protein folding, Science 252 (1991) 1796-1797. 

82. O. Ogut, J.P. Jin, Developmentally regulated, alternative RNA splicing-generated 

pectoral muscle-specific troponin T isoforms and role of the NH2-terminal 

hypervariable region in the tolerance to acidosis, The Journal of biological 

chemistry 273 (1998) 27858-27866. 

83. J. Wang, J.P. Jin, Conformational modulation of troponin T by configuration of 

the NH2-terminal variable region and functional effects, Biochemistry 37 (1998) 

14519-14528. 

84. R.J. Solaro, J.A. Lee, J.C. Kentish, D.G. Allen, Effects of acidosis on ventricular 

muscle from adult and neonatal rats, Circulation research 63 (1988) 779-787. 

85. O. Ogut, H. Granzier, J.P. Jin, Acidic and basic troponin T isoforms in mature 

fast-twitch skeletal muscle and effect on contractility, The American journal of 

physiology 276 (1999) C1162-1170. 

86. K.H. Weisgraber, Apolipoprotein E: structure-function relationships, Adv Protein 

Chem 45 (1994) 249-302. 

87. M.A. Perugini, P. Schuck, G.J. Howlett, Differences in the binding capacity of 

human apolipoprotein E3 and E4 to size-fractionated lipid emulsions, European 

journal of biochemistry / FEBS 269 (2002) 5939-5949. 

88. S. Yokoyama, Y. Kawai, S. Tajima, A. Yamamoto, Behavior of human 

apolipoprotein E in aqueous solutions and at interfaces, The Journal of biological 

chemistry 260 (1985) 16375-16382. 



www.manaraa.com

 

	

122	

	

89. P.E. Wright, H.J. Dyson, Intrinsically unstructured proteins: re-assessing the 

protein structure-function paradigm, Journal of molecular biology 293 (1999) 321-

331. 

90. D.M. Hatters, G.J. Howlett, The structural basis for amyloid formation by plasma 

apolipoproteins: a review, Eur Biophys J 31 (2002) 2-8. 

91. D.M. Hatters, C.A. Peters-Libeu, K.H. Weisgraber, Apolipoprotein E structure: 

insights into function, Trends in biochemical sciences 31 (2006) 445-454. 

92. A.J. Lusis, Atherosclerosis, Nature 407 (2000) 233-241. 

93. G. Chinetti-Gbaguidi, S. Colin, B. Staels, Macrophage subsets in atherosclerosis, 

Nat Rev Cardiol 12 (2015) 10-17. 

94. K. Takahashi, K. Hiwada, T. Kokubu, Isolation and characterization of a 34,000-

dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth 

muscle, Biochemical and biophysical research communications 141 (1986) 20-

26. 

95. R. Nigam, C.R. Triggle, J.P. Jin, h1- and h2-calponins are not essential for 

norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth 

muscle, Journal of muscle research and cell motility 19 (1998) 695-703. 

96. B.E. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, I. Forster, Conditional gene 

targeting in macrophages and granulocytes using LysMcre mice, Transgenic Res 

8 (1999) 265-277. 

97. J.A. Piedrahita, S.H. Zhang, J.R. Hagaman, P.M. Oliver, N. Maeda, Generation 

of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in 



www.manaraa.com

 

	

123	

	

embryonic stem cells, Proceedings of the National Academy of Sciences of the 

United States of America 89 (1992) 4471-4475. 

98. X. Zhang, R. Goncalves, D.M. Mosser, The isolation and characterization of 

murine macrophages, Curr Protoc Immunol Chapter 14 (2008) Unit 14 11. 

99. M.M. Bjorklund, A.K. Hollensen, M.K. Hagensen, F. Dagnaes-Hansen, C. 

Christoffersen, J.G. Mikkelsen, J.F. Bentzon, Induction of atherosclerosis in mice 

and hamsters without germline genetic engineering, Circulation research 114 

(2014) 1684-1689. 

100. A. Daugherty, S.C. Whitman, Quantification of atherosclerosis in mice, Methods 

in molecular biology 209 (2003) 293-309. 

101. W. Kueng, E. Silber, U. Eppenberger, Quantification of cells cultured on 96-well 

plates, Anal Biochem 182 (1989) 16-19. 

102. K.K. Sanford, W.R. Earle, G.D. Likely, The growth in vitro of single isolated tissue 

cells, Journal of the National Cancer Institute 9 (1948) 229-246. 

103. J.J. Lin, T.E. Hegmann, J.L. Lin, Differential localization of tropomyosin isoforms 

in cultured nonmuscle cells, The Journal of cell biology 107 (1988) 563-572. 

104. A. Daugherty, Mouse models of atherosclerosis, Am J Med Sci 323 (2002) 3-10. 

105. R. Coleman, T. Hayek, S. Keidar, M. Aviram, A mouse model for human 

atherosclerosis: long-term histopathological study of lesion development in the 

aortic arch of apolipoprotein E-deficient (E0) mice, Acta Histochem 108 (2006) 

415-424. 

106. R.K. Tangirala, E.M. Rubin, W. Palinski, Quantitation of atherosclerosis in murine 

models: correlation between lesions in the aortic origin and in the entire aorta, 



www.manaraa.com

 

	

124	

	

and differences in the extent of lesions between sexes in LDL receptor-deficient 

and apolipoprotein E-deficient mice, J Lipid Res 36 (1995) 2320-2328. 

107. T. Chiba, M. Ikeda, K. Umegaki, T. Tomita, Estrogen-dependent activation of 

neutral cholesterol ester hydrolase underlying gender difference of atherogenesis 

in apoE-/- mice, Atherosclerosis 219 (2011) 545-551. 

108. S.S. Meyrelles, V.A. Peotta, T.M. Pereira, E.C. Vasquez, Endothelial dysfunction 

in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender 

and aging, Lipids Health Dis 10 (2011) 211. 

109. C.M. Thomas, E.J. Smart, Gender as a regulator of atherosclerosis in murine 

models, Curr Drug Targets 8 (2007) 1172-1180. 

110. G. Caligiuri, A. Nicoletti, X. Zhou, I. Tornberg, G.K. Hansson, Effects of sex and 

age on atherosclerosis and autoimmunity in apoE-deficient mice, Atherosclerosis 

145 (1999) 301-308. 

111. H. Liu, B. Shi, C.C. Huang, P. Eksarko, R.M. Pope, Transcriptional diversity 

during monocyte to macrophage differentiation, Immunology letters 117 (2008) 

70-80. 

112. C.E. Turner, Paxillin and focal adhesion signalling, Nature cell biology 2 (2000) 

E231-236. 

113. J.G. Dickhout, S. Basseri, R.C. Austin, Macrophage function and its impact on 

atherosclerotic lesion composition, progression, and stability: the good, the bad, 

and the ugly, Arteriosclerosis, thrombosis, and vascular biology 28 (2008) 1413-

1415. 



www.manaraa.com

 

	

125	

	

114. K.J. Moore, F.J. Sheedy, E.A. Fisher, Macrophages in atherosclerosis: a 

dynamic balance, Nature reviews. Immunology 13 (2013) 709-721. 

115. R. Ohashi, H. Mu, X. Wang, Q. Yao, C. Chen, Reverse cholesterol transport and 

cholesterol efflux in atherosclerosis, QJM 98 (2005) 845-856. 

116. J.M. van Gils, M.C. Derby, L.R. Fernandes, B. Ramkhelawon, T.D. Ray, K.J. 

Rayner, S. Parathath, E. Distel, J.L. Feig, J.I. Alvarez-Leite, A.J. Rayner, T.O. 

McDonald, K.D. O'Brien, L.M. Stuart, E.A. Fisher, A. Lacy-Hulbert, K.J. Moore, 

The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting 

the emigration of macrophages from plaques, Nature immunology 13 (2012) 136-

143. 

117. M. Pataki, G. Lusztig, H. Robenek, Endocytosis of oxidized LDL and reversibility 

of migration inhibition in macrophage-derived foam cells in vitro. A mechanism 

for atherosclerosis regression?, Arteriosclerosis and thrombosis : a journal of 

vascular biology / American Heart Association 12 (1992) 936-944. 

118. C. Qin, T. Nagao, I. Grosheva, F.R. Maxfield, L.M. Pierini, Elevated plasma 

membrane cholesterol content alters macrophage signaling and function, 

Arteriosclerosis, thrombosis, and vascular biology 26 (2006) 372-378. 

119. C.V. Zerbinatti, R.W. Gore, Uptake of modified low-density lipoproteins alters 

actin distribution and locomotor forces in macrophages, Am J Physiol Cell 

Physiol 284 (2003) C555-561. 

120. B. Ludewig, J.D. Laman, The in and out of monocytes in atherosclerotic plaques: 

Balancing inflammation through migration, Proceedings of the National Academy 

of Sciences of the United States of America 101 (2004) 11529-11530. 



www.manaraa.com

 

	

126	

	

121. R. Liu, J.P. Jin, Deletion of calponin 2 in macrophages alters cytoskeleton-based 

functions and attenuates the development of atherosclerosis, Journal of 

molecular and cellular cardiology 99 (2016) 87-99. 

122. D.P. Ramji, T.S. Davies, Cytokines in atherosclerosis: Key players in all stages of 

disease and promising therapeutic targets, Cytokine Growth Factor Rev 26 

(2015) 673-685. 

123. S. Freigang, F. Ampenberger, A. Weiss, T.D. Kanneganti, Y. Iwakura, M. 

Hersberger, M. Kopf, Fatty acid-induced mitochondrial uncoupling elicits 

inflammasome-independent IL-1alpha and sterile vascular inflammation in 

atherosclerosis, Nature immunology 14 (2013) 1045-1053. 

124. Y. Kamari, A. Shaish, S. Shemesh, E. Vax, I. Grosskopf, S. Dotan, M. White, E. 

Voronov, C.A. Dinarello, R.N. Apte, D. Harats, Reduced atherosclerosis and 

inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-

derived interleukin-1alpha, Biochemical and biophysical research 

communications 405 (2011) 197-203. 

125. K. Kimura, T. Hashiguchi, T. Deguchi, S. Horinouchi, T. Uto, H. Oku, S. 

Setoyama, I. Maruyama, M. Osame, K. Arimura, Serum VEGF--as a prognostic 

factor of atherosclerosis, Atherosclerosis 194 (2007) 182-188. 

126. P.W. Holm, R.H. Slart, C.J. Zeebregts, J.L. Hillebrands, R.A. Tio, Atherosclerotic 

plaque development and instability: a dual role for VEGF, Ann Med 41 (2009) 

257-264. 

127. L. Yvan-Charvet, J. Kling, T. Pagler, H. Li, B. Hubbard, T. Fisher, C.P. Sparrow, 

A.K. Taggart, A.R. Tall, Cholesterol efflux potential and antiinflammatory 



www.manaraa.com

 

	

127	

	

properties of high-density lipoprotein after treatment with niacin or anacetrapib, 

Arteriosclerosis, thrombosis, and vascular biology 30 (2010) 1430-1438. 

128. N. Sharma, Y. Lu, G. Zhou, X. Liao, P. Kapil, P. Anand, G.H. Mahabeleshwar, 

J.S. Stamler, M.K. Jain, Myeloid Kruppel-like factor 4 deficiency augments 

atherogenesis in ApoE-/- mice--brief report, Arteriosclerosis, thrombosis, and 

vascular biology 32 (2012) 2836-2838. 

129. L. Cardilo-Reis, S. Gruber, S.M. Schreier, M. Drechsler, N. Papac-Milicevic, C. 

Weber, O. Wagner, H. Stangl, O. Soehnlein, C.J. Binder, Interleukin-13 protects 

from atherosclerosis and modulates plaque composition by skewing the 

macrophage phenotype, EMBO Mol Med 4 (2012) 1072-1086. 

130. R.N. Hanna, I. Shaked, H.G. Hubbeling, J.A. Punt, R. Wu, E. Herrley, C. Zaugg, 

H. Pei, F. Geissmann, K. Ley, C.C. Hedrick, NR4A1 (Nur77) deletion polarizes 

macrophages toward an inflammatory phenotype and increases atherosclerosis, 

Circulation research 110 (2012) 416-427. 

131. A.A. Hamers, M. Vos, F. Rassam, G. Marinkovic, K. Kurakula, P.J. van Gorp, 

M.P. de Winther, M.J. Gijbels, V. de Waard, C.J. de Vries, Bone marrow-specific 

deficiency of nuclear receptor Nur77 enhances atherosclerosis, Circulation 

research 110 (2012) 428-438. 

132. Z. Szekanecz, A.E. Koch, Macrophages and their products in rheumatoid 

arthritis, Current opinion in rheumatology 19 (2007) 289-295. 

133. A.K. Blakney, M.D. Swartzlander, S.J. Bryant, The effects of substrate stiffness 

on the in vitro activation of macrophages and in vivo host response to 



www.manaraa.com

 

	

128	

	

poly(ethylene glycol)-based hydrogels, J Biomed Mater Res A 100 (2012) 1375-

1386. 

134. M.L. Previtera, A. Sengupta, Substrate Stiffness Regulates Proinflammatory 

Mediator Production through TLR4 Activity in Macrophages, PloS one 10 (2015) 

e0145813. 

135. M.V. Smillie, L.A. Griffiths, P.J. Male, M.M. Wermeille, The disposition and 

metabolism of (+)-cyanidanol-3 in patients with alcoholic cirrhosis, Eur J Clin 

Pharmacol 33 (1987) 255-259. 

136. J.R. Pearlstone, M. Weber, J.P. Lees-Miller, M.R. Carpenter, L.B. Smillie, Amino 

acid sequence of chicken gizzard smooth muscle SM22 alpha, The Journal of 

biological chemistry 262 (1987) 5985-5991. 

137. M. Gimona, I. Kaverina, G.P. Resch, E. Vignal, G. Burgstaller, Calponin repeats 

regulate actin filament stability and formation of podosomes in smooth muscle 

cells, Molecular biology of the cell 14 (2003) 2482-2491. 

138. C. Shapland, J.J. Hsuan, N.F. Totty, D. Lawson, Purification and properties of 

transgelin: a transformation and shape change sensitive actin-gelling protein, 

The Journal of cell biology 121 (1993) 1065-1073. 

139. D. Lawson, M. Harrison, C. Shapland, Fibroblast transgelin and smooth muscle 

SM22alpha are the same protein, the expression of which is down-regulated in 

many cell lines, Cell Motil Cytoskeleton 38 (1997) 250-257. 

140. S.J. Assinder, J.A. Stanton, P.D. Prasad, Transgelin: an actin-binding protein and 

tumour suppressor, The international journal of biochemistry & cell biology 41 

(2009) 482-486. 



www.manaraa.com

 

	

129	

	

141. G.K. Owens, Molecular control of vascular smooth muscle cell differentiation, 

Acta physiologica Scandinavica 164 (1998) 623-635. 

142. O. Thompson, J.S. Moghraby, K.R. Ayscough, S.J. Winder, Depletion of the actin 

bundling protein SM22/transgelin increases actin dynamics and enhances the 

tumourigenic phenotypes of cells, BMC Cell Biol 13 (2012) 1. 

143. J.P. Jin, S.M. Chong, Localization of the two tropomyosin-binding sites of 

troponin T, Arch Biochem Biophys 500 (2010) 144-150. 

144. J.P. Jin, D. Wu, J. Gao, R. Nigam, S. Kwong, Expression and purification of the 

h1 and h2 isoforms of calponin, Protein expression and purification 31 (2003) 

231-239. 

145. R.J. Pelham, Jr., Y. Wang, Cell locomotion and focal adhesions are regulated by 

substrate flexibility, Proceedings of the National Academy of Sciences of the 

United States of America 94 (1997) 13661-13665. 

146. J.R. Tse, A.J. Engler, Preparation of hydrogel substrates with tunable mechanical 

properties, Curr Protoc Cell Biol Chapter 10 (2010) Unit 10 16. 

147. A. Zeidan, I. Nordstrom, S. Albinsson, U. Malmqvist, K. Sward, P. Hellstrand, 

Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity 

to actin polymerization inhibitors, Am J Physiol Cell Physiol 284 (2003) C1387-

1396. 

148. A. Zeidan, I. Nordstrom, K. Dreja, U. Malmqvist, P. Hellstrand, Stretch-dependent 

modulation of contractility and growth in smooth muscle of rat portal vein, 

Circulation research 87 (2000) 228-234. 



www.manaraa.com

 

	

130	

	

149. A. Zeidan, K. Sward, I. Nordstrom, E. Ekblad, J.C. Zhang, M.S. Parmacek, P. 

Hellstrand, Ablation of SM22alpha decreases contractility and actin contents of 

mouse vascular smooth muscle, FEBS letters 562 (2004) 141-146. 

150. K.R. Chien, E.N. Olson, Converging pathways and principles in heart 

development and disease: CV@CSH, Cell 110 (2002) 153-162. 

151. W.C. Claycomb, Control of cardiac muscle cell division, Trends in cardiovascular 

medicine 2 (1992) 231-236. 

152. W.R. MacLellan, M.D. Schneider, Genetic dissection of cardiac growth control 

pathways, Annual review of physiology 62 (2000) 289-319. 

153. M.H. Soonpaa, L.J. Field, Survey of studies examining mammalian 

cardiomyocyte DNA synthesis, Circulation research 83 (1998) 15-26. 

154. M.A. Laflamme, C.E. Murry, Heart regeneration, Nature 473 (2011) 326-335. 

155. J. Sadoshima, S. Izumo, Mechanical stretch rapidly activates multiple signal 

transduction pathways in cardiac myocytes: potential involvement of an 

autocrine/paracrine mechanism, The EMBO journal 12 (1993) 1681-1692. 

156. D. Sedmera, T. Pexieder, V. Rychterova, N. Hu, E.B. Clark, Remodeling of chick 

embryonic ventricular myoarchitecture under experimentally changed loading 

conditions, Anat Rec 254 (1999) 238-252. 

157. D. Sedmera, R.P. Thompson, F. Kolar, Effect of increased pressure loading on 

heart growth in neonatal rats, Journal of molecular and cellular cardiology 35 

(2003) 301-309. 

158. K. Tobita, J.B. Garrison, L.J. Liu, J.P. Tinney, B.B. Keller, Three-dimensional 

myofiber architecture of the embryonic left ventricle during normal development 



www.manaraa.com

 

	

131	

	

and altered mechanical loads, The anatomical record. Part A, Discoveries in 

molecular, cellular, and evolutionary biology 283 (2005) 193-201. 

159. G.E. Burch, R.B. Romney, Functional anatomy and throttle valve action on the 

pulmonary veins, American heart journal 47 (1954) 58-66. 

160. J.V. Klavins, Demonstration of striated muscle in the pulmonary veins of the rat, 

Journal of anatomy 97 (1963) 239-241. 

161. H. Nathan, H. Gloobe, Myocardial atrio-venous junctions and extensions 

(sleeves) over the pulmonary and caval veins. Anatomical observations in 

various mammals, Thorax 25 (1970) 317-324. 

162. M. Chard, R. Tabrizchi, The role of pulmonary veins in atrial fibrillation: a 

complex yet simple story, Pharmacology & therapeutics 124 (2009) 207-218. 

163. S.A. Chen, M.H. Hsieh, C.T. Tai, C.F. Tsai, V.S. Prakash, W.C. Yu, T.L. Hsu, 

Y.A. Ding, M.S. Chang, Initiation of atrial fibrillation by ectopic beats originating 

from the pulmonary veins: electrophysiological characteristics, pharmacological 

responses, and effects of radiofrequency ablation, Circulation 100 (1999) 1879-

1886. 

164. M. Haissaguerre, P. Jais, D.C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. 

Garrigue, A. Le Mouroux, P. Le Metayer, J. Clementy, Spontaneous initiation of 

atrial fibrillation by ectopic beats originating in the pulmonary veins, The New 

England journal of medicine 339 (1998) 659-666. 

165. P. Jais, M. Haissaguerre, D.C. Shah, S. Chouairi, L. Gencel, M. Hocini, J. 

Clementy, A focal source of atrial fibrillation treated by discrete radiofrequency 

ablation, Circulation 95 (1997) 572-576. 



www.manaraa.com

 

	

132	

	

166. M.P. Kracklauer, H.-Z. Feng, W. Jiang, J.L.C. Lin, J.J.C. Lin, J.-P. Jin, 

Discontinuous thoracic venous cardiomyocytes and heart exhibit synchronized 

developmental switch of troponin isoforms, FEBS Journal 280 (2013) 880-891. 

167. A.W. Kramer, Jr., L.S. Marks, The occurrence of cardiac muscle in the pulmonary 

veins of Rodenita, Journal of morphology 117 (1965) 135-149. 

168. Q. Wang, R.S. Reiter, Q.-Q. Huang, J.-P. Jin, J.J.-C. Lin, Comparative studies on 

the expression patterns of three troponin T genes during mouse development, 

The Anatomical Record 263 (2001) 72-84. 

169. H.Z. Feng, B. Wei, J.P. Jin, Deletion of a genomic segment containing the 

cardiac troponin I gene knocks down expression of the slow troponin T gene and 

impairs fatigue tolerance of diaphragm muscle, The Journal of biological 

chemistry 284 (2009) 31798-31806. 

170. J.P. Jin, A. Chen, Q.Q. Huang, Three alternatively spliced mouse slow skeletal 

muscle troponin T isoforms: conserved primary structure and regulated 

expression during postnatal development, Gene 214 (1998) 121-129. 

171. J.J. Lin, Monoclonal antibodies against myofibrillar components of rat skeletal 

muscle decorate the intermediate filaments of cultured cells, Proceedings of the 

National Academy of Sciences of the United States of America 78 (1981) 2335-

2339. 

172. Z.B. Yu, H. Wei, J.P. Jin, Chronic coexistence of two troponin T isoforms in adult 

transgenic mouse cardiomyocytes decreased contractile kinetics and caused 

dilatative remodeling, Am J Physiol Cell Physiol 303 (2012) C24-32. 



www.manaraa.com

 

	

133	

	

173. A. Redel, W. Baumgartner, K. Golenhofen, D. Drenckhahn, N. Golenhofen, 

Mechanical activity and force–frequency relationship of isolated mouse papillary 

muscle: effects of extracellular calcium concentration, temperature and 

contraction type, Pflugers Arch - Eur J Physiol 445 (2002) 297-304. 

174. E. Monuszko, S. Halevy, K. Freese, M. Liu-Barnett, B. Altura, Vasoactive actions 

of local anaesthetics on human isolated umbilical veins and arteries, British 

journal of pharmacology 97 (1989) 319-328. 

175. M.P. Revuelta, B. Cantabrana, M. Sanchez, A. Hidalgo, Effect of spermine and 

alpha-difluoromethylornithine on KCl- and CaCl2-induced contraction in rat 

uterine smooth muscle, Journal of autonomic pharmacology 18 (1998) 223-230. 

176. Z. Zhang, B.J. Biesiadecki, J.-P. Jin, Selective Deletion of the NH2-Terminal 

Variable Region of Cardiac Troponin T in Ischemia Reperfusion by Myofibril-

Associated μ-Calpain Cleavage†, Biochemistry 45 (2006) 11681-11694. 

177. H. Nathan, M. Eliakim, The junction between the left atrium and the pulmonary 

veins. An anatomic study of human hearts, Circulation 34 (1966) 412-422. 

178. O. Paes de Almeida, C.M. Bohm, M. de Paula Carvalho, A. Paes de Carvalho, 

The cardiac muscle in the pulmonary vein of the rat: a morphological and 

electrophysiological study, Journal of morphology 145 (1975) 409-433. 

179. N. Hamdani, M. de Waard, A.E. Messer, N.M. Boontje, V. Kooij, S. van Dijk, A. 

Versteilen, R. Lamberts, D. Merkus, C. Dos Remedios, D.J. Duncker, A. Borbely, 

Z. Papp, W. Paulus, G.J. Stienen, S.B. Marston, J. van der Velden, Myofilament 

dysfunction in cardiac disease from mice to men, Journal of muscle research and 

cell motility 29 (2008) 189-201. 



www.manaraa.com

 

	

134	

	

180. R. Cooke, The mechanism of muscle contraction, CRC critical reviews in 

biochemistry 21 (1986) 53-118. 

181. K.E. Kamm, J.T. Stull, Signaling to myosin regulatory light chain in sarcomeres, 

The Journal of biological chemistry 286 (2011) 9941-9947. 

182. J.M. Metzger, R.L. Moss, Myosin light chain 2 modulates calcium-sensitive cross-

bridge transitions in vertebrate skeletal muscle, Biophysical journal 63 (1992) 

460-468. 

183. D. Szczesna, J. Zhao, J.D. Potter, The regulatory light chains of myosin 

modulate cross-bridge cycling in skeletal muscle, The Journal of biological 

chemistry 271 (1996) 5246-5250. 

184. M.T.M. Mommersteeg, N.A. Brown, O.W.J. Prall, C. de Gier-de Vries, R.P. 

Harvey, A.F.M. Moorman, V.M. Christoffels, Pitx2c and Nkx2-5 Are Required for 

the Formation and Identity of the Pulmonary Myocardium, Circulation research 

101 (2007) 902-909. 

 

  



www.manaraa.com

 

	

135	

	

ABSTRACT 
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Degree: Doctor of Philosophy 

Arterial atherosclerosis is an inflammatory disease. Macrophages play a major 

role in the pathogenesis and progression of atherosclerotic lesions.  Modulation of 

macrophage function is a therapeutic target for the treatment of atherosclerosis.  

Calponin is an actin-filament-associated regulatory protein that inhibits the activity of 

myosin-ATPase and dynamics of the actin cytoskeleton.  Encoded by the Cnn2 gene, 

calponin isoform 2 is expressed at significant levels in macrophages.  Deletion of 

calponin 2 increases macrophage migration and phagocytosis. In the present study, we 

investigated the effect of deletion of calponin 2 in macrophages on the pathogenesis 

and development of atherosclerosis.  The results showed that macrophages isolated 

from Cnn2 knockout mice ingested the same level of acetylated low-density lipoprotein 

(LDL) as that of wild type (WT) macrophages but the resulting foam cells had 

significantly less impaired velocity of migration.  Systemic or myeloid cell-specific Cnn2 

knockouts effectively attenuated the development of arterial atherosclerosis lesions with 

less macrophage infiltration in apolipoprotein E knockout mice.  Consistently, calponin 
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2-null macrophages produced less pro-inflammatory cytokines than that of WT 

macrophages, and the up-regulation of pro-inflammatory cytokines in foam cells was 

also attenuated by the deletion of calponin 2.  Calponin 2-null macrophages and foam 

cells have significantly weakened cell adhesion, indicating a role of cytoskeleton 

regulation in macrophage functions and inflammatory responses, and a novel 

therapeutic target for the treatment of arterial atherosclerosis. 

To contribute to the greater field of vascular physiology and medicine, this 

dissertation research also pursued studies on the generation of anti-ApoE monoclonal 

antibodies, mechanoregulation in vascular smooth muscle and non-muscle cells, and a 

characterization of physiologically contractile cardiomyocytes in thoracic veins. The 

results add valuable contributions to our understanding of cardiovascular biology and 

diseases. 
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